PASCO (PArallel Structured COarsening): an overlay to speed up graph clustering algorithms - Université Jean Moulin Lyon 3
Pré-Publication, Document De Travail Année : 2024

PASCO (PArallel Structured COarsening): an overlay to speed up graph clustering algorithms

Résumé

Clustering the nodes of a graph is a cornerstone of graph analysis and has been extensively studied. However, some popular methods are not suitable for very large graphs: e.g., spectral clustering requires the computation of the spectral decomposition of the Laplacian matrix, which is not applicable for large graphs with a large number of communities. This work introduces PASCO, an overlay that accelerates clustering algorithms. Our method consists of three steps: 1-We compute several independent small graphs representing the input graph by applying an efficient and structure-preserving coarsening algorithm. 2-A clustering algorithm is run in parallel onto each small graph and provides several partitions of the initial graph. 3-These partitions are aligned and combined with an optimal transport method to output the final partition. The PASCO framework is based on two key contributions: a novel global algorithm structure designed to enable parallelization and a fast, empirically validated graph coarsening algorithm that preserves structural properties. We demonstrate the strong performance of 1 PASCO in terms of computational efficiency, structural preservation, and output partition quality, evaluated on both synthetic and real-world graph datasets.

Fichier principal
Vignette du fichier
main.pdf (1.03 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04837207 , version 1 (17-12-2024)

Identifiants

  • HAL Id : hal-04837207 , version 1

Citer

Etienne Lasalle, Rémi Vaudaine, Titouan Vayer, Pierre Borgnat, Rémi Gribonval, et al.. PASCO (PArallel Structured COarsening): an overlay to speed up graph clustering algorithms. 2024. ⟨hal-04837207⟩
0 Consultations
0 Téléchargements

Partager

More