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Communication
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Abstract: The need for odor measurement and pollution source identification in various sectors
(aeronautic, automobile, healthcare...) has increased in the last decade. Multisensor modules, such
as electronic noses, seem to be a promising and inexpensive alternative to traditional sensors that
were only sensitive to one gas at a time. However, the selectivity, the non-repetitiveness of their
manufacture, and their drift remain major obstacles to the use of electronic noses. In this first work,
we show how the mathematical modeling of the sensor response can be used to find new selectivity
characteristics, different from those classically used in the literature. We identified new specific
characteristics that have no physical meaning that can be used to find criteria for the presence of
formaldehyde and nitrogen dioxyde alone or in a mixture. We discuss the limitations of the method-
ology presented and suggest avenues for improvement, with more precise modeling techniques
involving symbolic regression.

Keywords: metal oxide gas sensors; nanomaterials; selectivity; temperature modulation; mathematical
modeling; data analysis; electronic nose

1. Introduction

The “electronic nose” is a system that simulates the biological nose and its role in
odor detection. Odor can be used to identify certain sources of interest or problems.
These include air pollution, environmental contamination, disease diagnosis, identification
of individuals in criminal investigations, etc. The needs of the various sectors show
that multisensor modules, such as electronic noses, appear to be a promising, low-cost
alternative for odor measurement, especially when metal oxides are used. However, SnO2
gas sensors have two main drawbacks in applications of everyday life: their sensitivity
is very low in the sub-20 ppm regime [1] and they are prone to drifts that greatly affect
selectivity scores even in public benchmarks [2,3]. The review of He et al. underscores the
potential of AI integration for enhanced sensor performance and real-time data analysis [1].

The principle of odor or gas composition identification is inspired by the human
nose, through the learning and classification of the identified odor (thanks to the brain),
characterized by a response from the sensors (olfactory cells). From a physical measurement
system point of view, the aim is to learn to recognize odors through the physical response
of microsensors placed in the presence of gas and to determine the presence of target
gases [4,5]. This means using a number of different sensors. One way around this problem
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is to use sensitive metal oxide surfaces at different hotplate temperatures. This reduces the
number of sensors required while increasing the number of features available [6,7]. It is
thus necessary to characterize the responses of sensitive surfaces at different temperatures
during dedicated supervised measurement campaigns in order to be able to identify the gas
in a future real situation. The selected microsensors are placed in atmosphere-controlled
measurement chambers, where gases are injected, alone or in a mixture, according to a
specific measurement protocol. All measurements collected then form a database from
which fingerprints are learned using machine learning or deep learning algorithms [8–10].

In the literature, selectivity is often expressed after stabilization of the sensor re-
sponse [6]. For example, the final value of the response to gas injection is a typical selectivity
characteristic. However, stability is reached in MOx sensors after ≈2 min, while in real
conditions, the variations can be numerous and rapid, making it impossible to wait for the
response to stabilize. This is what we are trying to solve by proposing a new method to
find selectivity characteristics.

A final major issue concerns sensor drift over time, particularly long-term drift. A
great deal of work has been conducted without considering this issue, which distorts the
predictive results of the proposed algorithms. In this work, we took account of these
issues, as proposed, for example, in the works of Dennler et al. [2] and Chang et al. [3]
research teams.

In our study, we chose to focus specifically on MOX sensors based on SnO2 nanopar-
ticular sensing materials, deposited on a micro-machining micro-hotplate with platinum
interdigitated electrodes and a platinum heating resistor. Volatile compounds or gases react
with the metal oxide surface by chemisorption (activated by temperature) and then cause a
resistivity change [4–6,8–10].

The aim of this initial work is to find an automatic calibration method to selectively
identify some chemical compounds without having to take into account drift and manufac-
turing faults on sensitive surfaces. Our work is based on laboratory-produced sensitive
layers that exhibit imperfections, whose performance measurements are to be found in [7].

First, we will describe how the sensitive surfaces studied were created. Then, we will
present a selectivity research methodology that normalizes sensor drift and calibration in
terms of target resistivity values. We will then present the obtained results and the relevance
of our methodology. Finally, we will discuss possible improvements to our methodology.

2. Materials and Methods
2.1. SNO2 Sensor Description

The structure is characterized by its circular membrane and comprises two levels of
Ti/Pt metallization: one in a circular coil for the heater and the other in circular, interdigi-
tated measurement electrodes, superimposed and separated by a passivation layer [7].

The sensitive layer studied in this work is based on SNO2 nanoparticles. The protocol
used to produce it is the one described in Aymen Sendi’s thesis [7]. SnO2 nanoparticles
were obtained by reacting controlled quantities of water (8 molar equivalents) on the
bis(dimethylamido) tin (II) precursor [(Sn((NMe)2)2]2 in the presence of dodecylamine
(C12H27N) (DDA) (10 molar equivalents). The solution was left for 4 days in synthetic air
at room temperature in a pillbox to obtain Sn2O2(OH)2 nanoparticles as a white powder.
This powder was washed with THF to remove excess ligands before being calcined in a
furnace under ambient air at 350 °C or 500 °C to form SnO2. The calcined powder is used
directly to produce a screen-printing paste for SnO2-based sensors.

The powder obtained was characterized by X-ray diffraction before and after annealing
at 500 °C. Before calcination, the phase present was tin oxohydroxide Sn3O2(OH)2 presented
on the left of Figure 1. After calcination in air, only the cassiterite phase of SnO2 is present
on the right of Figure 1.
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Figure 1. Characterization of Sn2O3(OH)2 and SnO2 powder by X-ray diffraction before and after
annealing and comparison of grain sizes from XRD.

The SnO2 nanoparticles were observed by SEM. The powder is in the form of ag-
glomerates of the order of a few microns in size, as shown on the left of Figure 2. Each
agglomerate is itself made up of nanoparticles less than 10 nm in diameter, as shown on
the right of Figure 2 .

Figure 2. SEM images of SnO2 nanoparticles produced, showing agglomerate and nanoparticle
arrangements, respectively.

Let us now present how we used these sensors in our experiment.

2.2. Experimental Set-Up

The micro-hotplates were designed and manufactured in LAAS-CNRS. Experimental
characterization of the sensor and comparative tests with reference instruments can be
found in [6] (pp. 67–112). It is optimized to operate at a high temperature with low power
consumption, 500 °C at 50 mW, and a low temperature, 100 °C at 10 mW with low thermal
inertia (20 ms) and high thermomechanical stability [11].

In order to analyze the response to this sensor and test our new selectivity detection
methodology, we applied a specific gas injection protocol in a test chamber containing the
sensor. For each injection of gas, gas mixture, or air, we forced the heater to first maintain
a temperature of 500 °C and then 100 °C for 150 s each. For each injection, this step is
repeated 6 times.

As an example, the response to an injection of formaldehyde (2 ppm) according to the
protocol described is shown in Figure 3.
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Figure 3. Nanoparticular SnO2 response in Ohms under formaldehyde (2 ppm) successively at 500 °C
and 100 °C.

The gas injections were performed in the order described in Table 1. Concentrations
are expressed in ppm and are in range with industrial sensors as TGS 2620 (50 ppm for
CO). The different atmospheres are made with a constant total flow rate of 200 mL/min
controlled by digital flowmeters.

Table 1. Ordered list of gas injections in the experiment with their concentration in ppm.

S Gas Mixture CO NO2 C2H4O CH2O

2 Air 0 0 0 0
3 CO 50 0 0 0
4 Air 0 0 0 0
5 NO2 0 0.2 0 0
6 Air 0 0 0 0
7 C2H4O 0 0 0.2 0
8 Air 0 0 0 0
9 CH2O 0 0 0 2
10 Air 0 0 0 0
11 CO, NO2 50 0.2 0 0
12 Air 0 0 0 0
13 CO, C2H4O 50 0 0.2 0
14 Air 0 0 0 0
15 CO, CH2O 50 0 0 2
16 Air 0 0 0 0
17 NO2, C2H4O 0 0.2 0.2 0
18 Air 0 0 0 0
19 NO2, CH2O 0 0.2 0 2
20 Air 0 0 0 0
21 C2H4O, CH2O 0 0 0.2 2
22 Air 0 0 0 0
23 CO, NO2, C2H4O 49 0.2 0.15 0
24 Air 0 0 0 0
25 CO, NO2, CH2O 50 0.2 0 2
26 Air 0 0 0 0
27 CO, C2H4O, CH2O 50 0 0.2 2
28 Air 0 0 0 0
29 NO2, C2H4O, CH2O 0 0.2 0.2 2
30 Air 0 0 0 0
31 CO 50 0 0 0
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Table 1. Cont.

S Gas Mixture CO NO2 C2H4O CH2O

32 Air 0 0 0 0
33 NO2 0 0.2 0 0
34 Air 0 0 0 0
35 C2H4O 0 0 0.2 0
36 Air 0 0 0 0
37 CH2O 0 0 0 2
38 Air 0 0 0 0
39 CO, NO2 50 0.2 0 0
40 Air 0 0 0 0
41 CO, C2H4O 50 0 0.2 0
42 Air 0 0 0 0
43 CO, CH2O 50 0 0 2
44 Air 0 0 0 0
45 NO2, C2H4O 0 0.2 0.2 0
46 Air 0 0 0 0
47 NO2, CH2O 0 0.2 0 2
48 Air 0 0 0 0
49 C2H4O, CH2O 0 0 0.2 2
50 Air 0 0 0 0
51 CO, NO2, C2H4O 40 0.2 0.2 0
52 Air 0 0 0 0
53 CO, NO2, CH2O 50 0.2 0 2
54 Air 0 0 0 0
55 CO, C2H4O, CH2O 50 0 0.2 2
56 Air 0 0 0 0
57 NO2, C2H4O, CH2O 0 0.2 0.2 2

Now that we can measure the response of various gases, let us present how we
mathematically model them.

2.3. Mathematical Modeling of Sensor Response

The sensitive surface’s response to a gas injection has a specific transient response
depending on its type (Figure 3), the type of gas injected, and the temperature variation of
the micro-hotplate. We can see the response has a recurring pattern for each temperature
step. Our goal is to mathematically model these two patterns for each gas, allowing us to
infer enabling characteristics for selectivity clustering algorithms, described in Section 3.3.

For this very first work, in order to take into account the stabilization of the response in
dynamic mode, we consider the last dynamic sequence (extracted thanks to the experiment
timestamps) at 500 °C and 100 °C for each gas injection.

To avoid sensor drift issues and the initial non-stabilized response for each new
gas sequence, we normalize all the responses under gas with the values of the previous
sequence in the reference atmosphere (humid air) [2,3]. In future work, we will be adding
an algorithm for the automatic detection of modeling changes so that we can normalize
using the previous response without having to go through the under-air sequence.

In terms of modeling, previous work in the LAAS-CNRS laboratory used piecewise
affine modeling to describe the sensor response to a gas injection [6]. However, this
approach is a large approximation, which does not take into account all the information
available in the data, which is why we propose, in this paper, to mathematically model all
sensor responses for each injection of gas and gas mixtures with more elaborated models
given in the next section.

This initial modeling work was carried out by manually testing a series of common
mathematical functions, such as logarithmic, exponential, polynomial, or rational functions,
expanding over the polynomial fitting of [12]. The model selection presented in the
following section was solely made on visual and subjective criteria. Nonetheless, these first
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models allowed us to develop a new methodology for finding selectivity criteria, which
is the point of this initial work. We will discuss in Section 4.2 a systematic way to derive
models with precision for our future work.

2.4. Machine Learning Strategy

The last brick of our methodology is a machine learning algorithm that will help us
identify which parameters are selective for our gas selectivity problem. Here are the most
commonly used methods. They are listed in order of complexity and are usually tested in
this order: if one fails to give relevant results, the next one is tried. See [13] for more details.

• Principal Component Analysis (PCA) consists of a dimensionality reduction in order
to summarize the information content of a wide range of features. This gives a new
graphical representation that allows for better qualitative classification. However, this
classification must be performed by a human so it must be complemented by machine
learning tools for better objectivity.

• Linear Discriminant Analysis (LDA) tackles this problem by learning from a dataset to
label the data points. Like PCA, it also reduces feature dimensionality but maximizes
the separation of groups of similar points.

• Support Vector Machines (SVMs) are a set of supervised learning techniques whose
aim is to find the hyperplane that best divides a dataset in two. They are particularly
interesting because their results are easily embedded in electronic noses.

• Artificial Neural Networks (ANNs) are a great tool to process and analyze non-linear
data. When trained with labeled data, they are able to recognize patterns, which is a
critical task in electronic noses for odor recognition for instance.

In this first work, we chose to stick with the PCA and SVM methods, as the core of our
contribution relies on the innovative modeling of the sensor’s response.

Let us now present the results of this new methodology.

3. Results
3.1. New Selectivity Criteria Derived by Mathematical Modeling of SnO2 Sensor Response

We recall that 60 injections were made in the order given in Table 1. Since the sensor’s
response was similar for all gases and mixtures, we searched for a single common model
for each temperature only. The mathematical model adopted for all the responses to gas
alone or in mixture for temperatures of 500 °C and 100 °C, respectively, are

f500(x) = α +
1

u ∗ x + w
, (1)

f100(x) = a ∗ ln(b ∗ x + c) + d. (2)

For each injection, we computed the coefficients by using non-linear least squares to fit
the function to the data. As an example, Figures 4 and 5 show the quality of the modeling
of the resistivity of the SnO2 layer in response to the presence of acetaldehyde, air, and
formaldehyde for a heating temperature of 500 °C and 100 °C, respectively.

From our models, the characteristics we derived and were retained as selectivity search
criteria are given in Table 2:

Table 2. The 11 features used for our selectivity analysis.

Temperature Features

100 °C d b c a vfn100 f ′100(0)
500 °C α u w vfn500 f ′500(0)

where

• vfn100 and vfn500 are defined as the average of the three last points of the sequence
(the asymptotic value). The sensor’s response time being around 2–3 min, it is hardly
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available for detecting a gas composition change, which is represented by a peak
lasting a few seconds. vfn is used here to test the relevance of this choice proposed in
some articles in the literature in terms of the selectivity criteria [6,14].

• f ′100(0) and f ′500(0) are the slope at the origin of the sequence, also used in other
articles [14].

Figure 4. Acetaldehyde, air, and formaldehyde response modeling at 500 °C (continuous line) against
the data (dots).

Figure 5. Acetaldehyde, air, and formaldehyde response modeling at 100 °C (continuous line) against
the data (dots).

Before applying machine learning tools for clustering, we checked that measurement
uncertainty on the coefficients did not hinder their use as selectivity criteria. As an example,
we present here the measurement error coefficients anorm and αnorm for formaldehyde and
reference air. Figure 6 shows the measurement error bars for characteristic a, respectively, α
for air and formaldehyde. We chose to represent standard deviation error bars. It corre-
sponds to the average distance between each data point and the mean. These results show
that uncertainties do not call into question the use of these characteristics for selectivity
since there is no overlap of values.

Now that we have our selectivity criteria and our coefficient values from our mathe-
matical models, let us use machine learning tools in order to analyze them.
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Figure 6. Characteristic a and α derived from curve fitting of all available sequences of all cycles.

3.2. Classical Selectivity Testing Method: Principal Component Analysis

As suggested by the literature [8,10,12], we decided to use the PCA method as a first
approach, given the number of features involved.

We present the PCA analysis in Figures 7–10. In these Figures, each point represents a
given injection from Table 1. Moreover, the color describes the concentration of the gas we
want to detect: in blue it is absent, and in orange it is present.

Figure 7. Projection over the first two Principal Components retrieved from a PCA for carbon
monoxide selectivity analysis.
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Figure 8. Projection over the first two Principal Components retrieved from a PCA for acetaldehyde
selectivity analysis.

Figure 9. Projection over the first two Principal Components retrieved from a PCA for formaldehyde
selectivity analysis.

The results show that selectivity for acetaldehyde and carbon monoxide is not identifi-
able from the PCAs performed on our 11 features from Table 2. However, clusters appear
for formaldehyde and nitrogen dioxide, which suggests the existence of relevant features



Sensors 2024, 24, 7964 10 of 17

for the selectivity of these gases. Consequently, we wanted to analyze features in pairs
using SVM methods to find more separated clusters.

Figure 10. Projection over the first two Principal Components retrieved from a PCA for nitrogen
dioxide selectivity analysis.

3.3. Specific Support Vector Machines

We recall that our main goal is to increase the sensors’ gas selectivity even if the
sensitive surface may be flawed. Already known selectivity features are the derivatives
at the beginning and the asymptotic values of the gas response. Using our mathematical
models and the associated parameters, we wish to find the best features for gas selectivity.
In order to do that, we define the problem as a machine learning task. We define the
selectivity of a target gas in a mixture as a binary classifier, where sequences have True
labels if the gas is in a mixture and False otherwise. For example, sequence 55 (c.f. Table 1)
would have True labels for classifying CO, C2H4O, and CH2O, and False for NO2.

For a binary classifier, the metric of choice to determine its quality is the F1-score:

F1-score =
True Positives

True Positive + 1
2 (False Negative + False Positive)

(3)

An F1-score close to 1 means that the sensor’s sensitivity with respect to the target
gas is perfect, while an F1-score close to 0.8 means the features do not allow for sensitivity
or that the surfaces are not selective since the score would correspond to a fully random
classifier. In Figures 11–14, we show the results for a Support Vector Machine binary
classifier with a linear kernel for each pair of features and each gas for all the sequences
in Table 1. Using this matrix representation, it is easy to find which pair of features from
our mathematical modeling at 100 ºC and 500 ºC are the best if several features are colored
in red.

For acetaldehyde and carbon monoxide, this method of clusterization based on re-
tained characteristics does not allow separation. The layer studied, according to the
methods presented, is not selective to these two gases. In Figures 15 and 16, two pairs of
features are shown to illustrate how hard it visually is to discriminate between sequences
with or without acetaldehyde.
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Figure 11. Comparison of F1-score of a binary classifier SVM over the acetaldehyde sequences over
the extracted features for each pair of features.

Figure 11. Comparison of F1-score of a binary classifier SVM over the acetaldehyde sequences over
the extracted features for each pair of features.

Sensors 2024, 1, 0 12 of 17

Figure 12. Comparison of F1-score of a binary classifier SVM over the carbon monoxide sequences
over the extracted features for each pair of features.

Figure 12. Comparison of F1-score of a binary classifier SVM over the carbon monoxide sequences
over the extracted features for each pair of features.
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Figure 13. Comparison of F1-score of a binary classifier SVM over the formaldehyde sequences over
the extracted features for each pair of features.

Figure 13. Comparison of F1-score of a binary classifier SVM over the formaldehyde sequences over
the extracted features for each pair of features.

Sensors 2024, 1, 0 14 of 17

Figure 14. Comparison of F1-score of a binary classifier SVM over the formaldehyde sequences over
the extracted features for each pair of features.

Figure 15. Acetaldehyde projections over d and b used for the Support Vector Machine learning.

Figure 14. Comparison of F1-score of a binary classifier SVM over the formaldehyde sequences over
the extracted features for each pair of features.
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Figure 15. Acetaldehyde projections over d and b used for the Support Vector Machine learning.

Figure 16. Acetaldehyde projections over α and a used for the Support Vector Machine learning.

For NO2, we find that the most meaningful feature is the asymptotic value vfn100,
as commonly found in the literature [6]. But for real-time applications, where the sensor
temperature switches constantly, it can be hard to measure it. This matrix representation
shows that α and a can be good features for NO2 sensitivity instead. To improve the
sensitivity, it will be important to find other features or improve the modeling, as we will
discuss in Section 4.2.
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In the formaldehyde case, almost all features can detect its presence, with α being the
best feature to use for real-time detection. In Figures 17 and 18, two pairs of features are
shown to illustrate how easy or hard it visually is to discriminate between sequences with
or without formaldehyde.

Figure 17. Formaldehyde projections over d and b used for the Support Vector Machine learning.

Figure 18. Formaldehyde projections over α and a used for the Support Vector Machine learning.

We conclude this article with a discussion of the results and how to improve our new
methodology on several points for future works.
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4. Discussion

In this paper, we aim to propose a new approach for extracting selectivity character-
istics even when sensitive surfaces have defects in order to minimize the impact on the
production of minor surface defects that sometimes drastically alter the sensor response.
The results we obtained in this initial work are very encouraging, but there is still room
for improvement.

4.1. Clustering Approach

We showed that the methodology presented allows us, using SVM, to find the best
selectivity criteria derived from the derived characteristics of the proposed formaldehyde
detection model.

Acetaldehyde and CO gases have no meaningful results with respect to our experiment
and mathematical modeling. Here are some possibilities for this insensitivity:

• The Support Vector Machine is not good enough for some clustering, as for example
in Figure 15 where another kind of separation like K-Means could be better.

• The sensors are not selective with respect to those gases. The results hence could show
that there is a need for other surfaces than the used micro-hotplate SnO2.

4.2. A New Approach to Derive Precise Mathematical Models

The results shown in this paper are derived from the coefficients of Equations (1) and (2),
which were found by trying many different functional forms by hand and selecting the most
promising candidates, and then optimizing the value of its constants to fit the data points.
We believe that a better physical model would improve the accuracy and sensitivity of the
method. Even though many theoretical models exist [15] for different kinds of sensors and
gases, finding good candidates can get very tedious. For example, Mitchell et al. [9] sorted
multiple candidates by hand based on physical equations.

Symbolic regression (SR) [16,17] is a type of machine learning regression analysis that
searches for mathematical expressions to model relationships within a dataset. Unlike
traditional regression methods that fit data to a predefined equation, SR explores a broad
space of potential mathematical forms, automatically identifying both the structure and
parameters of the equation. This approach enables it to discover compact, interpretable
models that capture underlying patterns, making it valuable for scientific research where
the goal is to unveil fundamental, interpretable relationships rather than just achieving
predictive accuracy. At Capgemini Engineering, we developed Newton-SR, a symbolic
regression tool based on genetic programming to find the best candidates, and won the SR
Bench 2023 competition with open-source code [18].

We will aim at generalizing the analysis performed in Section 3 using our SR algorithm.
This would allow for faster identification of the various gases and open new possibilities
in sensor calibration in the long run. This will be the object of our next article. In the
meantime, here is an example of the sequence presented in Section 2.3. The equation found
by hand (2) has the following parameters when fitted to the data:

x 7→ −30.46 ∗ ln(0.000483 ∗ x + 3.25) + 111.96. (4)

In comparison, the functions generated by our algorithm are given in Table 3. We define
here the several metrics used to compare several functions:

• Mean Square Error (MSE): the average distance between the data points and the
function for a cloud of points E := {(xi, yi)}N

i=1 ⊂ Rd ×R and a function f is defined as

MSE( f )(E) :=
1
N

√√√√ N

∑
i=1

(yi − f (xi))2.
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• Complexity: The number of operators in the tree representation of a function. For
instance, x 7→ x + 1 has a complexity of three.

• Efficiency: the MSE log gain relative to the previous less complex function.

As a result, (4) has a complexity of 10 and an MSE of 0.42. Using symbolic regression,
the function of complexity nine in Table 3 is less complex and has a better MSE of 0.235,
thus improving accuracy without compromising the complexity of the representation:

x 7→ 500, 882.000
3196.380 + x0.719 − 78.678 (5)

Table 3. Best-fitting candidates found for the sequence presented in Section 2.3 using symbolic
regression, sorted by complexity. x represents the time dynamics. The best equation is defined as the
one that minimizes efficiency.

MSE Complexity Efficiency Equation

0.208 19 −0.008 ((x/−6840.830) + (−57,955.400/(−3064.320 − x)) +
(4,586,540.000/((106,033.000 * exp((x/48,836.400)))
− 28,663.100)))

0.209 18 −0.004 ((173,644.000/(2218.140 + (((x **
2.415)/704,367.000)/109.105) + (x ** 0.772)))
− (x/6563.040))

0.210 17 −0.004 ((4,857,520.000/(x + 49,061.900 + (−19,350,100.000/
(x + 3016.620)))) − (35.652 * exp((x/724,710.000))))

0.211 16 −0.061 (((4,643,410.000/(x + 47,861.400 + (−18,701,000.000/
(x + 2972.830)))) − (x * 0.000)) − 33.448)

0.224 15 -0.017 ((977,649.000/(6862.460 + (x ** 0.791) + (−1.000 *
((−604,512.000/(−2231.820 − x)))))) − 70.013)

0.232 13 −0.004 (((x * 0.000) + (506,206.000/(2980.680 + (x **
0.702)))) − 91.603)

0.235 9 −0.758 ((500,882.000/(3196.380 + (x ** 0.719))) - 78.678)
0.502 8 −0.752 (−369.368 − (−4201.520/log((x + 13,003.900))))
1.066 7 −1.999 ((5,449,210.000/(x + 46,945.000)) − 45.749)
7.864 6 −0.000 (x + 43.101 + (x/−1.000))
7.864 5 −1.032 (0.000 * (88,065.400 − x))

22.072 4 −0.008 (89.100/log(x))
22.604 1 0.000 6.639

5. Conclusions

The aim of our work is to propose a methodology to overcome defects in the selectivity
of sensitive layers and the well-known time drift of this type of sensitive surface. In
conclusion of this first work, we can state that the mathematical modeling of sensor
responses to single or mixed gases allows for a good selectivity with only a couple of
features compared to higher numbers used in other works. We showed that specific
characteristics derived from modeling that have no physical meaning a priori, such as a
and α defined in (2) and (1), can be used to find criteria for the presence of formaldehyde
alone or in a mixture. We discussed the limitations of the methodology presented and
suggested avenues for improvement, with more precise modeling techniques involving
symbolic regression and new sensors from the market. This work is ongoing and will be
the subject of a forthcoming publication.
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