
HAL Id: hal-04295596
https://univ-lyon3.hal.science/hal-04295596

Submitted on 20 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A trustworthy decentralized change propagation
mechanism for declarative choreographies

Amina Brahem, Tiphaine Henry, Sami Bhiri, Thomas Devogele, Nassim Laga,
Nizar Messai, Yacine Sam, Walid Gaaloul, Boualem Benattallah

To cite this version:
Amina Brahem, Tiphaine Henry, Sami Bhiri, Thomas Devogele, Nassim Laga, et al.. A trustworthy
decentralized change propagation mechanism for declarative choreographies. 20th International Con-
ference on Business Process Management, Sep 2022, Munster, Germany. pp.418-435, �10.1007/978-3-
031-16103-2_27�. �hal-04295596�

https://univ-lyon3.hal.science/hal-04295596
https://hal.archives-ouvertes.fr


A trustworthy decentralized change propagation
mechanism for declarative choreographies

Amina Brahem1,3, Tiphaine Henry2,4, Sami Bhiri3, Thomas Devogele1,
Nassim Laga2, Nizar Messai1, Yacine Sam1, Walid Gaaloul4, and Boualem

Benatallah5

1 LIFAT, University of Tours, Tours, France, amina.brahem@univ-tours.fr
2 Orange Labs, Paris, France, tiphaine.henry@orange.com

3 OASIS, University Tunis El Manar, Tunis, Tunisia
4 Telecom SudParis, UMR 5157 Samovar, Institut Polytechnique de Paris, France

5 Dublin City University, Ireland

Abstract. Blockchain technologies have emerged to serve as a trust
basis for the monitoring and execution of business processes, particu-
larly business process choreographies. However, dealing with changes in
smart contract-enabled business processes remains an open issue. For
any required modification to an existing smart contract (SC), a new ver-
sion of the SC with a new address is deployed on the blockchain and
stored in a contract registry. Moreover, in a choreography, a change in
a partner process might affect the processes of other partners. Thus,
the change effect must be propagated to partners of the choreography
affected by the change. In this paper, we propose a new approach over-
coming the limitations of SCs and allowing for the change management of
blockchain-enabled declarative business process choreographies modeled
as DCR graphs. Our approach allows a partner in a running blockchain-
based DCR choreography instance to change its private DCR process. A
change impacting other partners is propagated to their affected processes
using a SC. The change propagation mechanism ensures the compatibil-
ity checks between public DCR processes of the partners. We demon-
strate the approach’s feasibility through an implemented prototype.

Keywords: Process choreography, Change propagation, DCR graph,
SC

1 Introduction

Blockchain technologies have emerged to serve as a trust basis for the moni-
toring and execution of business processes [18], and particularly business pro-
cess choreographies [2]. This is due to several mechanisms, be it the consensus
method applied among the nodes to validate a transaction, the immutable na-
ture of transactions, process automation using SCs and its ability to manage
decentralized, peer-to-peer interactions [10].

Both imperative and declarative process modelling paradigms have been used
to deal with blockchain-based business process execution. Proposed techniques



2 A.Brahem, T.Henry, S.Bhiri, T.Devogele, N. Laga, N. Messai, Y.Sam, et al.

include translation of BPMN collaboration models into SCs [2] and execution en-
gines of declarative orchestration processes called Dynamic-Condition-Response
(DCR) graphs [3]. However, dealing with changes in blockchain-enabled business
processes remains an open research issue [17].

Business processes managed by “static” SCs cannot be upgraded because
the SCs are immutable once deployed. Efforts exist to support versioning in
SCs [22]. For any required modification on the existing SC, a new version of
the SC with new address is deployed on the blockchain and stored in a contract
registry. So the process may have new version and in future interactions should
be consistent with it. However, with SC having many versions, it is difficult to
maintain inter-dependent SCs links and to copy data from old to new version of
the contract [22]. Moreover, these are all costly operations. We aim to enable a
way to integrate change management into SCs implementing the business logic
of process choreographies without deploying them again. This circumvents the
aforementioned problems related to versioning.

In a choreography, each partner manages its private process and interacts
with other partners via its public process. The model comprising all interac-
tions is called choreography process [7, 9]. In a running choreography instance, a
change may consist of a simple change operation (ADD/REMOVE/UPDATE)
or combination of change operations [4, 7]. A change in the instance of a part-
ner process may affect other partners’ process instances. Hence, change must be
propagated to the affected partners of the choreography instance [7, 20]. In a trip
e-booking process, for example, a hotel may close its catering facility for repara-
tions and thus DELETE the dining service. A tourist having booked the hotel
with dinner included will be unable to reach the hotel service “ProvideDinner”.
Additionally, a new restaurant may want to establish (ADD) a convention with
the hotel. This new relationship will affect the tourist interested in trying the
restaurant. Thus, the ADD change must be propagated to the tourist process
instance.

One has also to ensure that neither the structural nor behavioral compati-
bility of partners processes are violated after a change [1, 7, 11, 12]. Structural
compatibility checks consist of ensuring that there is at least one potential send
message assigned to a partner with a corresponding receive message assigned to
another partner[12]. Behavioral compatibility refers to ensuring that the chore-
ography process after the change is safe and terminates in acceptable state. In
other words, no deadlocks should occur between partners public processes dur-
ing the choreography execution after change [7, 11]. For example, in the trip
e-booking process, the task “HaveDinner” is a public task. It is composed of two
messages, namely the send and receive messages, that are respectively assigned
to Tourist and NewRestaurant. When NewRestaurant DELETES the receive
message “HaveDinner”, a structural incompatibility occurs as the corresponding
send message is still present in the Tourist process.

To the best of our knowledge, the integration of change management, and
especially change propagation, in blockchain-based declarative choreographies
management systems has not been studied. In this paper we focus on the fol-



A trustworthy decentralized change mechanism for choreographies 3

lowing research question: (RQ) How to guarantee correct change propagation in
declarative blockchain-based DCR choreography process instances?

We propose a change mechanism to bring adaptiveness to the trustworthy
execution of declarative choreographies. We adopt the three levels of granular-
ity: (i) choreography, (ii) public and (iii) private processes used in imperative
languages such as BPMN and apply it to the declarative language called DCR
graphs [7]. With DCR, processes are modelled as a set of events linked together
with relations (a kind of temporal dependencies) [5, 6]. In [14], authors propose
an approach for a trustworthy deployment and execution of DCR choreogra-
phies. Choreography participants build incrementally the choreography process
managed by a SC. Meanwhile, participants execute their private events off-chain
in their local process execution engine. We build on and extend this work with
the change management mechanism, focusing on the introduction, negotiation
and propagation phases at the process instance level. Similarly to declarative
languages, a DCR graph is specified as a set of rules. These rules are interpreted
at runtime. As they represent business requirements, it is easier to add or update
constraints if a requirement changes [5].

Our approach allows a partner in a running DCR choreography instance to
change its private process. Changes affecting private activities are applied off-
chain while changes impacting interactions with other partners are managed on-
chain through the SC [14]. Changes are mainly ADD/ REMOVE and UPDATE
operations applied to the DCR choreography events and relations [4, 7]. We only
focus on these change operations as that they are challenging by themselves and
that any change to a process can be written as a combination of these opera-
tions [13]. The on/off-chain separation ensures (i) the privacy of the partners as
private information in private processes is not shared and kept off-chain and (ii)
trust as the blockchain provides an immutable history of execution logs attest-
ing the enforcement of correct execution of the choreography interactions [14].
Besides, SC transactions act like ”approval check points” during change nego-
tiation and propagation. Hence, claim resolution is eased between partners in
case of a misbehavior as the blockchain stores the negotiation and propagation
history on-chain. For example, when a partner wrongfully projects the change
and creates a behavioral incompatibility after the change, execution logs can
be used to check who is the source of and what is the erroneous behavior. To
summarize, we complement the work in [14] with the following contributions:

– We augment the SC managing the choreography process with change man-
agement techniques to enable change operations on a deployed instance of a
choreography.

– We propose a protocol that allows (i) partners to first negotiate the change
on-chain, (ii) then to dynamically update the choreography process instance
managed by the SC with the new process change information, and (iii) finally
propagate this information across partners processes affected by the change.

– We leverage the platform in [14] to integrate change to running DCR chore-
ography instances.



4 A.Brahem, T.Henry, S.Bhiri, T.Devogele, N. Laga, N. Messai, Y.Sam, et al.

The remainder of this paper is organized as follows. Sect. 2 presents funda-
mental definitions used in the approach and introduces an illustrating example.
Sect. 3 reviews the main known related work. Sect. 4 details our approach. Sect. 5
presents an implemented prototype and some evaluation tests. Finally, Sect. 6
concludes the paper and gives insights into future work.

2 Basic Concepts and Illustrating Example

DCR graphs are one of many declarative business process modeling languages
whose formalism is presented in [6]. A DCR graph G is represented by a triplet
(E, M , Rel). E is a set of labelled events. M denotes the marking of the graph
and is represented by the triplet (currently included events In, currently pend-
ing responses Pe, previously executed events Ex). Finally, Rel is the set of re-
lations of the graph. Relations are of five types: condition−→ •, response• −→,
milestone−→ ⋄, include−→ + and exclude−→ %.

A DCR choreography models interactions between partners. Its execution
is done in a distributed way. A DCR choreography is defined as follows [14]:

Definition 1. A DCR choreography C is a triple (G, I, R) where G is a
DCR graph, I is a set of interactions and R is a set of roles. An interaction i is
a triple (e, r, r′) in which the event e is initiated by the role r and received by
the roles r′ ⊂ R \ {r}.

Which leads us to the definitions of one partner’s public and private DCR
processes. A public DCR process of one partner represents the projection
of the DCR choreography over this partner (see definition 4 in [14] for more
details). The private DCR process of one partner is a kind of a refinement of
the public DCR process, i.e., it comprises the public interactions in addition to
the internal events related to this partner.

Fig. 1 presents the trip e-booking scenario that was initially presented in the
introduction (c.f. Section 1) translated into DCR: Fig. 1(a) presents the DCR
choreography and Fig. 1(b) presents the tourist private DCR process. The chore-
ography process is managed in the different partners processes, namely Tourist,
TouristOfficer, Hotel, and CastleAdmin, to ensure a separation of concerns. Pay-
Pass (p3) is an internal event of the role Tourist, managed off-chain to preserve
the privacy of Tourist. PurchasePass (e1) is a choreography interaction sent by
Tourist and received by TouristOfficer. It is managed on-chain (c.f. [14]). To
execute the send event, Tourist triggers the SC from its private DCR process.
Table 1 shows the choreography markings of Fig. 1 during a run. Each column
stands for the events of the choreography. Rows indicate markings’ changes as
events on the left are triggered. For example, initially no event is executed nor
pending and the event e1 is included. Thus, its marking is (1,0,0). Once Tourist
executes e1, the marking becomes (1,0,1). Partners have control over the set of
internal and choreography interactions they are involved in. This set of events,
mentionned hereinafter as a partner private DCR process, is illustrated by the
tourist’s one in Fig. 1(b).



A trustworthy decentralized change mechanism for choreographies 5

Fig. 1. DCR choreography process and tourist private DCR process of the trip e-
booking process

Table 1. Evolution of the markings (included, pending, executed) of the DCR chore-
ography process in Fig. 1 (before changes)

Markings
e1 e2 e3 e4

(init) (1,0,0) (0,0,0) (0,0,0) (0,0,0)
e1 (1,0,1) (1,1,0) (0,0,0) (0,0,0)
e2 (1,0,1) (1,0,1) (1,1,0) (1,1,0)

Both choreography and private DCR processes in Fig. 1 are susceptible to
changes. A change is composed of a set of change elements and a combination
of change operations. We define in the following these two concepts.

Definition 2. Change element Let C=(G, I, R) be a DCR choreography.
Let ϵ be the set of internal events in G, i.e., events having one initiator r ∈ R.
I is the set of choreography interactions. GRef is a change element (also called
refinement element) iff one of the following conditions are met:

1. GRef ∈ {ϵ ∪ I∪ −→ • ∪ • −→ ∪ −→ ⋄∪ −→ +∪ −→ %}
2. GRef = (e ∈ {ϵ∪I}, me(in, pe, ex), {−→ •∪• −→ ∪ −→ ⋄∪ −→ +∪ −→ %})

This means that, GRef is a refinement element if it is either (1) an atomic
element, i.e., (i) an internal event in the set of internal events ϵ such as p2 in
Fig. 1(b), or (ii) an interaction such as e3, or (iii) one of the five relations such
as the condition relation linking e3 and e2. (2) a DCR fragment, i.e., a sub-
graph with a minimal configuration: {one event, initial marking of the event,



6 A.Brahem, T.Henry, S.Bhiri, T.Devogele, N. Laga, N. Messai, Y.Sam, et al.

one relation}. For example in Fig. 1, change #3 consists into adding the DCR
fragment (p2: (1,0,0), p2 −→ •e3, p2 −→ +e3, p2 −→ %p2).

Definition 3. Change operation To define the change operations, we refer
to [4] where authors propose three change operations on DCR orchestration
processes. We re-adapt these operations to be used in the context of DCR chore-
ographies and where the change element can be one of the three types defined
in Definition 2. Change operations are of three major types6:

– C ⊕ GRef to ADD the refinement element GRef to the original DCR chore-
ography C. To apply the change, one has to compose the refinement element
with the original graph, i.e., one has to take the union of events, labels,
relations and markings of the two parts of the composition.

– C ⊖ GRef to REMOVE a change element GRef from C. For example, to
remove an interaction, one has to remove it from the set of interactions I, its
marking from the marking (In,Pe,Ex) of the graph as well as the incoming
and outgoing constraints coming to/ going from this interaction.

– C[GRef 7→ G′
Ref ] to UPDATE a change element. For the case of an event

(internal or interaction): the UPDATE operation is used for replacing one
event by another or re-labelling it. To replace, for example, one interaction
with another, one has to update the set of interactions I with the new
interaction, the marking of the graph and the set of incoming and outgoing
constraints.

An example of an UPDATE operation is change #1 in red in Fig. 1. Here,
the pass purchased by the Tourist in the event e1 undergoes a change: it will let
the Tourist to have a dinner in NewRestaurant instead of having it in the Hotel.
Hence, the TouristOfficer, who manages the pass and can add new participants,
establishes a new convention with NewRestaurant. Consequently, the change
operations to make are: (i) add the partner NewRestaurant, (ii) an UPDATE
operation where the interaction e4 is replaced with the DCR fragment{e5,e6}.
These changes are called public changes.

To proceed with such a change: (i) the change should be negotiated (agreed on
or not) by the involved partners, (ii) the change proposition should be examined
by all involved partners, (iii) the negotiation outcome should be tamper-proof
to avoid that someone diverges from the common understanding, and (iv) the
change should be correctly propagated [5, 6].

In the following section, we present the related work regarding change mech-
anisms in cross-organizational business processes.

3 Related Work

Change management at runtime in procedural processes has been studied in [7]
where change propagation algorithms ensure behavioral and structural sound-

6We use the same notation of the operations defined in [4]



A trustworthy decentralized change mechanism for choreographies 7

ness of choreography partners private processes after the change. In [15, 8], au-
thors consider the change negotiation phase but no mechanism is proposed to
ensure that all partners have trustfully applied the change, and no blockchain is
used to deal with this problem.

Change management has also been studied in DCR processes, mainly through
runtime changes. The first efforts appear with the notion of DCR fragments
where simple change/add/remove operations are implemented [4]. Authors fol-
low the build-and-verify approach to apply incremental changes to the frag-
ments. This approach consists of the continuous iterations of (i) modeling, (ii)
deadlocks and livelocks freedom verification, and (iii) executing until a further
adaptation is required. Nonetheless, partner trust into change propagation of
DCR choreographies is not addressed in this work. In [19], authors use a correct-
by-construction approach on running instances of DCR graphs. The structure
underlying a DCR is a labelled transition system. Starting from a user-defined
change, authors define a reconfiguration workflow. During the transition period,
old requirements are disabled and verified subpaths of activity executions are en-
abled. This setting holds until new requirements are verified. However, not every
reconfiguration problem has a solution and for every change, one has to build
a new reconfiguration workflow. It requires heavy calculations to discover the
verified subpaths, which is not easy for large models. Finally, in [5], authors use
a set of rules ensuring the correctness of new instances of DCR graphs by design.
New change operations must respect these rules to prevent a misbehavior.

Regarding change management in blockchain-enabled processes, in [17], au-
thors propose an approach that allows collaborative decisions about (1) late
binding and un-binding of actors to roles in blockchain-based collaborative pro-
cesses, (2) late binding of subprocesses, and (3) choosing a path after a complex
gateway. A policy language enables the description of policy enforcement rules
such as who can be a change initiator and who can endorse a change. However,
authors do not consider ADD/REMOVE/UPDATE change operations like we
do. Additionally, the private processes of roles are not considered and neither is
the propagation of the effect of the new decisions over partners.

To summarize, most related work consider change in process orchestrations
only [4, 5]. Additionally, approaches binding actors to roles in a process collab-
oration [17] currently push the burden of checking the transitive effect of new
changes onto the new parties. This checking, likely done in a manual way, which
can lead to errors. Finally, even when the change propagation soundness is dealt
with, the proposed approach does not provide a mechanism that ensures chore-
ography partners project the change and propagate it trustfully.

4 Proposed Approach

DCR business processes monitored in the blockchain are represented into SCs
as follows (c.f.[14]): the SC holds a set of activities, each assigned to an actor,
and linked to an execution state. A relation matrix which summarises the execu-



8 A.Brahem, T.Henry, S.Bhiri, T.Devogele, N. Laga, N. Messai, Y.Sam, et al.

Table 2. Proposed allowed and denied changes for a DCR process

Type Rule
AR1 Change condition / response / milestone relations
DR1 Inclusion of an excluded event
DR2 Exclusion of an included event
AR2 Block temporarily/ permanently an included event

tion constraints is used to update activity states based on smart-contract based
execution requests.

Partners coordinate their own processes connected to the blockchain, and
propose/receive changes to/from other partners (step 1 in Sect. 4.1). Our goal
is to make it possible for each partner to (i) modify its private DCR process,
and (ii) suggest a change to the DCR choreography monitored in the blockchain.
If the change request is fully private, for e. g., it concerns an internal event or
a relation linking two internal events, (private-to-private relation) or a relation
linking an interaction to an internal event (public-to-private relation), then the
private process of the partner updates accordingly. If the change is public, it is
managed onchain (step 2 in Sect.4.2 4.2). Public changes concern an interaction
or a relation linking two interactions (public-to-public relation) or a relation
linking an internal event to an interaction (private-to-public relation). Then, a
negotiation stage starts (step 3 in Sect.4.3), followed by a propagation stage
(step 4 in Sect.4.4.)

4.1 Step 1: Change Proposal

The role initiator defines the change of its private DCR process off-chain. She
may modify its internal events and interactions, as well as relations linking
events. The introduction of a change is called refinement (cf. Definition 2).
It is done before submitting it to other partners for examination.

A set of integrity rules need to be defined to ensure the correctness of the up-
dated graph. A DCR graph is correct iff it is safe, i.e., free of deadlocks and live,
i.e., free of livelocks. A DCR graph is deadlock free if for any reachable marking,
there is either an enabled event or no included required responses. Whereas live-
ness describes the ability of the DCR graph to completion by continued execution
of pending response events or their exclusion. To do so, we leverage non-invasive
adaptation rules, originally introduced in the context of DCR orchestrations, to
DCR choreographies [5]. We divide these rules in rules describing (i) allowed
change rule (AR) and (ii) denied change rule (DR) presented in Table 2 7.

One can ADD/REMOVE/UPDATE condition, response and milestone re-
lations (AR1). The only restriction is not to have cycles of condition/response
relations to avoid deadlocks. However, one cannot include an already excluded

7The reader can check [5] for more details about denied and allowed change opera-
tions in DCR orchestrations that inspired the proposed changes.



A trustworthy decentralized change mechanism for choreographies 9

event (DR1) neither can she exclude an already included event (DR2). One al-
ternative to this is to block temporarily or permanently an event (AR2). We
suppose that we want to block permanently a DCR graph G of executing an
event e. We refine with the fragment Q: Q = { e: (0,1,0), g: (0,1,0)), g −→ • g,
g −→ • e }. Here, e can never fire (again) because it depends on g. Moreover,
by excluding and including g, one can selectively enable and disable e.

In our example, the change proposal #1 consists into replacing e4 by the
fragment composed of the events {e5, Pe6}. Here, one did not add an exclude
relation to the already included event e4, i.e., (DR2) evaluates to false. Conse-
quently, one is not concerned by blocking temporarily/ permanently an event,
i.e., (AR2) is also verified. Only milestone and response relation are added to the
graph and thus (AR1) evaluates to true. Moreover, change # 1 does not contain
an include relation to an already excluded event and so (DR1) is also respected.
Hence, the change proposal evaluates to true because ∀i, (ARi) evaluates to true
and ∀j, (DRj) evaluates to false.

4.2 Step 2: Change request for public-related changes

The SC stores the list of change requests assigned to process instances as a
hashmap. Ongoing process instance changes are recorded with the identification
hash of the current process instance hcurr. The identification hash corresponds
to the IPFS hash of the process instance description8. This hash is generated
by the change initiator upon a change request, before the SC call. During the
change request lifecycle, the request is assigned to a status belonging to {Init,
BeingProcessed, Approved, Declined}. Status is set to Init if no change request is
ongoing, to BeingProcessed during the negotiation stage, to Approved or Declined
once the change request is processed by all endorsers.

Algorithm 1 presents the SC function registering a change request. The iden-
tity of the change initiator is checked: it should belong to the list of partner
addresses (line 2). Then, the change request is created for the current process
instance (line 3-8).The hash of the redesigned workflow is stored in hreq (line
4). This identification hash corresponds to the IPFS description of the requested
redesigned public workflow hreq. The status of the change request is set to Be-
ingProcessed (line 5). The addresses of the change initiator and endorsers E are
attached to the request (line 6-7). Endorsing partners are, for example, in the
case of adding a choreography interaction i (i) the sender and the receiver(s)
of the event and , (ii) partners connected directly with the choreography in-
teraction. The change initiator also sets two response deadlines t1 for change
endorsement and t2 for change propagation to be checked by the SC (line 8-9).
Finally, the SC emits a change request notification to all partners listening to
the SC (line 10). If one of the change endorsers does not reply before deadline t1
during endorsement or t2 during propagation, an alarm clock triggers a SC func-
tion cancelling the change request. If one of the change endorsers does not reply

8InterPlanetary File System (IPFS) is a peer-to-peer protocol that uses content
addressing for storing and sharing files on the blockchain (https://docs.ipfs.io/).



10 A.Brahem, T.Henry, S.Bhiri, T.Devogele, N. Laga, N. Messai, Y.Sam, et al.

Algorithm 1: Request change smart contract function
Data: changeRequests the list of change requests, E the list of endorser

addresses, hcurr the current ipfs workflow hash, hreq the ipfs hash of
requested change description, t1 the deadline timestamp for change
endorsement, and t2 the deadline timestamp for change propagation

Result: emits change request notifications to endorsers
1 Function requestChange(hcurr, hreq,E, t1, t2):
2 require msg.sender belongs to the list of business partners;
3 if changeRequests[hcurr].status == Init then
4 set changeRequests[hcurr].hreq ← hreq;
5 set changeRequests[hcurr].status ← ”BeingP rocessed”;
6 set changeRequests[hcurr].initiator ← msg.sender;
7 set changeRequests[hcurr].endorsers ← E;
8 set changeRequests[hcurr].t1 ← t1;
9 set changeRequests[hcurr].t2 ← t2;

10 emit RequestChange(hcurr, hreq, E, msg.sender);
11 else
12 emit Error; // an ongoing change request is being processed
13 End Function

before deadline t1 during endorsement or t2 during propagation, an alarm clock
triggers a SC function cancelling the change request at a specified block in the
future corresponding to t1 or t2. It consists into a SC function being called by
incentivized users triggering the SC at the desired timestamp [16]. Upon trigger,
the SC function sets the change request status to cancelled and emits an event
notifying partners that the change has been cancelled. By so doing, we prevent
any deadlock that could occur due to one of the partners not responding.

In Fig. 1, Change #1 is public as it concerns three partners, namely Tourist,
Hotel, and NewRestaurant. Hence a negotiation must occur between the partners
to reach a consensus on the proposed change before propagating it. NewRestau-
rant launches the change negotiation by triggering the SC. The SC updates the
change requests list linked to hcurr with the following information: [(1) hreq the
IPFS hash of the updated process description which comprises the operation UP-
DATE(e4) with (e5+e6), (2) the list of endorsers: {addressHotel, addressT ourist},
(3) Change negotiation deadline t1 = 72h, (4) Change propagation deadline t2
= 120h]

4.3 Step 3: Change negotiation for public-related changes

All partners subscribe to the change request events emitted by the SC. Endorsing
partners must send their decision request to the SC based on the rules in Table. 2.
If the change once computed on the endorser’s process respects all ARi and DRj
rules, then the endorser approves the request. It is otherwise rejected. The rules
checks are manual and can be automated in the future work. The SC collects the



A trustworthy decentralized change mechanism for choreographies 11

Algorithm 2: Endorser decision management smart contract function
Data: changeRequests the list of change requests, es the endorser address, E

the list of registered endorsers, hcurr the hash of the current workflow,
hreq the hash of the desired workflow, rsp the endorser response
∈ {0, 1}

1 Function endorserRSP(hcurr, es, rsp):
2 require(block.timestamp <= changeRequests[hcurr].t1);
3 require(es ∈ E);
4 require(changeRequests[hcurr].changeEndorsement[es] != 1);
5 require(changeRequests[hcurr].status == (”BeingP rocessed”);
6 if rsp == 1 then
7 set changeRequests[hcurr].changeEndorsement[es]←− 1;
8 emit AcceptChange(hreq, es);
9 lockInstanceChecker(hcurr)

10 else if rsp == 0 then
// declineapprovalOutcomes

11 set changeRequests[hcurr].status ← ”Declined”;
12 emit DeclineChange(hreq, es);
13 else
14 emit Error(hreq, es);
15 End Function

different decisions from the endorsers to lock (or not) the choreography instance
and proceed (or not) with the change. We detail both stages hereinafter.

Algorithm 2 presents the SC function receiving one endorser’s decision. the
alarm clock should not have been raised (line 2), the endorser address es should
belong to the list of registered addresses (line 3), and not having answered to the
change request already (line 4). The change request should also be processable,
i.e., its status should be set to BeingProcessed (line 5). If all conditions are met,
the endorser response rsp is processed. If rsp equals 1 (line 6), the endorser has
accepted the change. Its response is saved into the change endorsement list (line
7), the notification of acceptance is sent to all endorsers as well as the change
initiator (line 8), and the SC checks whether the instance needs to be locked
(line 9). The lockInstanceChecker function assesses whether all endorsers have
accepted the change: the changeEndorsement list should be filled with ones. At
this stage, no further execution of included events is allowed and the mechanism
waits for pending events to terminate. The change status is then updated to
Approved.

In our example, we suppose that both endorsers confirmed the change request
(rspHotel = 1 and rspT ourist = 1) while respecting t1. The SC locks the instance
for change propagation. As it manages the negotiation process, a tamper-proof
record of the negotiation is accessible by all partners. This prevents conflicts and
eases potential claim resolutions.



12 A.Brahem, T.Henry, S.Bhiri, T.Devogele, N. Laga, N. Messai, Y.Sam, et al.

Fig. 2. Sequence diagram of the propagation stage illustrating the interactions between
partners and the SC with A being the change initiator

4.4 Step 4: Change propagation

Change propagation is to apply the change effect after the negotiation phase
succeeds to (i) the affected partners DCR public processes, (ii) each partner
propagates the change effect to its private DCR process. To ensure the correct-
ness of the change propagation, we introduce the following property where c is
a change, r, E are respectively c initiator and endorsers, Gr,Gr′ are respectively
the public DCR process of r and r′ where r′ ∈ E:

Property 1. if effect(c)∥Gr
: ⇒ Gr is correct-by-construction and ∀r ∈ E,

effect(c)∥G
r′

: ⇒ Gr′ is correct-by-construction then Gr and Gr′ are compatible
∀r ∈ E.

Property 1. states that if Gr is correct-by-construction and if ∀r′ ∈ E, Gr′

are also correct-by-construction, then compatibility is verified. In fact, a public
DCR process Gr is correct-by-construction means that computing the effect of a
change c over r introduces no deadlocks in Gr (see Sect. 4.1). Thus, if the DCR
public models of the change initiator and endorsers are safe, i.e., no deadlocks
can occur, then they are able to communicate in a proper way after the change
and are consequently compatible with each other. The SC enforces propagation
correctness as it maintains the tamper-proof record for the endorsement and
application of the change effect across partners. Another correctness criterion
is checking the consistency between one partner’s private and public DCR pro-
cesses. This is out of the scope of the present work and will be done in future
work.

Indeed, Fig. 2 depicts the sequence diagram of the change propagation inter-
actions taking place between partners and the SC. Each partner projects locally
the DCR choreography in its projection using the process description given in
the IPFS hash (Fig. 2 step 1-4). Participant A first fetches the IPFS hash of



A trustworthy decentralized change mechanism for choreographies 13

Algorithm 3: Confirm change propagation smart contract function
Data: changeRequests the list of change requests, es the sender address, E

the list of registered endorsers, hcurr the hash of the current workflow
Result: manages the record of projections of the new public view

1 Function confirmProjection(hcurr, es):
2 require(es ∈ E);
3 require(block.timestamp <= changeRequests[hcurr].t2);
4 require(changeRequests[hcurr].didPropagate[id] != 1);
5 set changeRequests[hcurr].didPropagate[id] ←− 1;
6 emit LogWorkflowProjection(hcurr);
7 End Function

the new public view stored on-chain (step 1), and uses the hash to retrieve the
description stored in IPFS (step 2). Using this information, A projects locally
the new version of the process, merging its private process with the updated
public activities. Once completed, A notifies the SC to confirm the projection
(step 4). Algorithm 3 presents the function triggered by partners to confirm the
projection to the SC. A list didPropagate keeps track of the propagation status,
i.e., it records the private projection of each partner. The function checks that
the partner belongs to the list of endorsers (line 2), that the alarm clock has not
been raised (line 3), and that the endorser has not projected locally yet (line 4).
Each participant must proceed before the change propagation deadline t2. Else,
the propagation is cancelled, and the instance returns to its initial state before
the change request. Other endorsers follow the same steps.

The SC detects all local projections once didPropagate is filled with ones and
notifies the change initiator. The change initiator then retrieves the new DCR
choreography that was saved into IPFS using hreq (Fig. 2 step 5) and forwards
it to the SC (Fig. 2 step 6). The SC updates the relations and markings stored
into the process instance and resets the change status of the workflow instance:
a new change request can be processed (Fig. 2 step 7). In total, all participants
must complete two transactions with the SC and one transaction with IPFS.
The change initiator must also complete two additional transactions with the
SC to update the view stored on-chain and unlock the instance.

In our motivating example, the propagation of change #1 occurs with all
endorsers Tourist, Hotel and Restaurant updating their private DCR process
with the approved change. To do so, they retrieve the change description stored
in IPFS under hreq. They project the updated public change description on
their role following the same approach as in [14]. For example, Tourist will re-
trieve the events {e5, e6}. Tourist then combines this projection with its private
events {p1,p2,p3}. Once all projections have been done and notified to the SC,
the change initiator NewRestaurant finally triggers the SC to update the DCR
choreography of the running instance with the updated process description e.g.,
the updated relation matrices, event markings and access controls (c.f. [14] for
a more detailed description).



14 A.Brahem, T.Henry, S.Bhiri, T.Devogele, N. Laga, N. Messai, Y.Sam, et al.

5 Implementation and evaluation

5.1 Implementation
In [14], authors presented a solution aiming at executing DCR choreographies
in a hybrid on/off-chain fashion. The DCR choreography description comprises
events descriptions (i.e., labels, roles, markings), relation matrices, and actors
linked to events. Here, we leverage this platform to integrate change at the
process instance level 9.

We use a Ganache testnet to deploy a public SC S which manages each
process. S comprises (1) execution constraint rules, (2) a list of workflows ini-
tially empty, and (3) the list of change requests linked to the list of workflows.
At the time of writing, 1ETH=2581,86 $. The initial cost of deployment of
S is 0.10667554 ETH (439.21$) for a gas usage of 3,555,855. Additionally, a
SC manages roles authentication and access control rules. Its deployment takes
1,953,149 gas (0.05859442 ETH or 241.25$). The SC is deployed in Ropsten
at: 0x523939C53843AD3A0284a20569D0CDf600bF811b10. For each workflow,
RoleAdmin (1) generates the DCR choreography bitvector representation, (2)
saves the textual DCR choreography input to IPFS, and (3) registers the new
workflow on-chain (cf. [14]). The workflow is identified by the IPFS unique hash.

Each partner can edit the running instance. Editing is done using the panel
manager, a tool to update DCR graph descriptions. Users can add private and
choreography interactions, as well as condition, response, include, exclude, and
milestone relations. They can also use the panel manager to remove and update
events and relations. The panel manager implements integrity rules presented in
subsection 4.1: the panel verifies the soundness of a desired change operation.
Hence, we obtain a redesigned DCR graph that is correct-by-construction. After
edition, the panel manager triggers the SC if it detects a public change. The
SC registers the request and forwards it to the identified partners. Each partner
accesses the change request and answers back to the SC. If the change request
is accepted by all, change propagation starts.

5.2 SC evaluation costs
The initial cost for deploying the motivating example instance is 0,00933308 ETH
(24,097$) for a gas usage of 311,103. Indeed, the consensus algorithm used in the
Ethereum blockchain is a proof of work [10], hence each SC transaction excepting
read transactions are payable to compensate miners from computation costs.
We evaluate the transaction costs to assess the computation costs related to the
change negotiation and propagation functionalities.

In our motivating example, three changes occur. Change#1, initiated by
NewRestaurant, is fully public: e5 and e6 replace e4, and two public-to-public
relations (response and milestone) are added. In the following, we investigate
the public negotiation and propagation SC costs for this change.

9Code of the implemented prototype augmented with change management is acces-
sible at https://github.com/tiphainehenry/adaptiveChangeDCR/

10This address can be used with Etherscan to access the record of transactions.



A trustworthy decentralized change mechanism for choreographies 15

Table 3. SC change propagation gas costs and gas fees

Stage Step Partner Gas Cost(ETH) Cost($)
Nego. LaunchNego NewRestaurant 213194 0,00639582 16,513

Case Decline TouristOfficer 46773 0,00140318 3,623
Case Accept TouristOfficer 78999 0,00157998 4,079

Tourist 86428 0,00181256 4,68
Propag. Upd. projection TouristOfficer 96448 0,00201296 5,197

Upd. projection Tourist 96375 0,0020115 5,193
Upd. projection NewRestaurant 87648 0,00175296 4,526

Upd. SC instance NewRestaurant 1321496 0,02642992 68,238

Table 3 presents the gas usage induced by the execution of the SC during the
negotiation and propagation stages. It is used to compensate miners for their
computation power in the blockchain cryptocurrency. The table also presents
the transaction costs in ETH and USD.

Regarding the negotiation stage, Tourist first launches the change request for
the replacement of one public task by a new fragment of two public tasks. The
transaction fees for the request are 0,00639582 ETH, and are the highest fees of
the negotiation stage. Indeed, the fee to be paid to decline or accept a role is
worth around 0.0015 ETH. Nonetheless, all fees are of the same order of magni-
tude (0.001 ETH). Regarding the propagation stage, the transaction fees of the
SC correspond to two stages. First, the change endorsers apply the change effect
to their private processes. No transaction fee is requested to fetch the IPFS hash
of the new DCR choreography. However, a transaction fee is necessary to update
the SC list didPropagate recording the projections. The SC notification of the
local update is worth 0,00201296 ETH and 0,0020115 ETH for both endorsers
(around 5$ per local projection). The change initiator finally updates its projec-
tion. The cost to switch the workflow locally is 0,00175296 ETH. NewRestaurant
sends a transaction to update the DCR choreography on-chain using the same
tool used to deploy a new instance on-chain. The cost for switching the DCR
choreography on-chain is 0,02642992 ETH. It is one order of magnitude higher
compared to other transaction fees, but close to the cost of instantiating a new
instance on-chain, due to the update of relation matrices and markings. Hence,
propagation transaction fees are higher than the negotiation ones. Additionally,
the cost of the propagation mainly comprises the cost of the DCR choreography
update. Execution times, represent the results obtained after the enactment of
one trace. The reported execution time factors the transaction confirmation time
obtained on the test network. In average, the execution time of on-chain interac-
tions is 14.8s. Additionally, the average time for IPFS transactions is 7.6ms. The
change initiator NewRestaurant needs to process four on-chain transactions and
two off-chain transactions with IPFS. Both endorsers TouristOfficer and Tourist
must process three on-chain transactions and two IPFS transactions. Hence,
in total, the whole cycle of change management takes 152.6s if all participants
launch their transactions on trigger (4+3+3 on-chain transactions requiring 14.8s
in average, and 2+2+2 IPFS transactions requiring 7.6ms in average).



16 A.Brahem, T.Henry, S.Bhiri, T.Devogele, N. Laga, N. Messai, Y.Sam, et al.

6 Discussion and Conclusion

In this paper, we propose a change propagation mechanism to bring adaptiveness
to trustworthy execution of declarative choreography instances. Our approach
comprises three main steps. First, the change introduction, where a partner in a
running DCR choreography instance wants to change its private process. Here,
we declare rules that specify the allowed and prohibited changes. These rules
provide a correct-by-construction DCR choreography after the change and en-
sure that no deadlocks nor livelocks occur. All changes are applied at the process
instance level. Local changes are managed off-chain. Changes impacting an in-
teraction start on on-chain negotiation phase. If the negotiation succeeds, the
change effect is propagated to the partners affected directly by the change. We
suppose that all partners project trustfully the updated DCR choreography. The
SC records partners’ involvement in a tamper-proof fashion during the change
negotiation and propagation stages. If a misbehavior occurs, the blockchain logs
can be used as a shared source of truth.

We present a prototype implementation as a proof-of-concept to evaluate the
technical feasibility of the approach, and evaluate it experimentally by looking
at transaction fees for a typical change. We leverage IPFS temporarily during
the negotiation and propagation stages to process the updated DCR choreog-
raphy for cost optimization considerations. Only a hash of the DCR process is
stored into the SC. Our experiments show that the transaction fees required for
the propagation are one order of magnitude higher than the ones for the nego-
tiation, as the cost of the propagation mainly comprises the cost of the DCR
choreography update. We appraise these costs to have more significance for heavy
negotiation scenarios, and to be proportional to the number of participants in-
volved in a public change, as the more participants, the more interactions are
necessary with the SC.

In this paper, we only consider the compatibility checks between public DCR
processes of partners as a correctness criterion. This ensures that the DCR chore-
ography is safe and terminates in acceptable state, i.e., is deadlock free after the
change. We are currently working on proving the consistency checks between one
partner’s private and public DCR processes. In the present work, we focus on the
current instance of the process. Nonetheless, it is also interesting to consider the
change at the process model level and that after change is validated, all future
instances follow the change.

A limitation of the approach is the fact that the change initiator specifies the
endorsers. This can be handled differently by considering a pre-specified list of
the endorsers and the choreography participants agree on this list before starting
the process instance [17]. In this way, the agreement on change negotiation and
propagation can be placed off-chain. An on-chain transaction saying that the
agreement is reached is stored in a multi-signed document in IPFS (this might
require the use of a different blockchain platform). However, even with multi-
sig mechanisms, the risk of private key loss remains and recovery schemes such
as using secured wallets should be investigated [21]. Finally, governance should
also be considered carefully when choosing the access control setup. For public



A trustworthy decentralized change mechanism for choreographies 17

blockchains, not every endorser should necessarily run their own full node to
preserve the consensus. For permissionned blockchains, governance should be
well shared between change endorsers to avoid any tampering or transaction
misuse.

References
1. van der Aalst, W.M., Weske, M.: The p2p approach to interorganizational work-

flows
2. Weber et al., I.: Untrusted business process monitoring and execution using

blockchain. In: BPM. pp. 329–347. Springer (2016)
3. Madsen et al., M.F.: Collaboration among adversaries: distributed workflow exe-

cution on a blockchain. In: FAB. p. 8 (2018)
4. Mukkamala et al., R.R.: Towards trustworthy adaptive case management with

dynamic condition response graphs. In: EDOC. pp. 127–136. IEEE (2013)
5. Debois et al., S.: Replication, refinement & reachability: complexity in dynamic

condition-response graphs. Acta Informatica 55(6), 489–520 (2018)
6. Hildebrandt et al., T.: Declarative choreographies and liveness. In: FORTE. pp.

129–147. Springer (2019)
7. Fdhila et al., W.: Dealing with change in process choreographies: Design and im-

plementation of propagation algorithms. Information systems 49, 1–24 (2015)
8. Fdhila et al., W.: Multi-criteria decision analysis for change negotiation in process

collaborations. In: EDOC. pp. 175–183. IEEE (2017)
9. Van Der Aalst et al., W.M.: From public views to private views–correctness-by-

design for services. In: WS-FM. pp. 139–153. Springer (2007)
10. Buterin, V., et al.: A next-generation smart contract and decentralized application

platform. white paper 3(37) (2014)
11. Debois, S., Hildebrandt, T., et al.: Safety, liveness and runtime refinement for

modular process-aware is with dynamic sub processes. In: FM (2015)
12. Decker, G., Weske, M.: Behavioral consistency for b2b process integration. In:

CAISE. pp. 81–95. Springer (2007)
13. Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process

models: the provop approach. J SOFTW MAINT EVOL-R 22(6-7), 519–546 (2010)
14. Henry, T., Brahem, A., Laga, N., Hatin, J., et al.: Trustworthy decentralized exe-

cution of declarative business process choreographies. In: ICSOC. Springer (2021)
15. Indiono, C., Rinderle-Ma, S.: Dynamic change propagation for process choreogra-

phy instances. In: OTM Conferences. pp. 334–352. Springer (2017)
16. Li, C., Palanisamy, B.: Decentralized privacy-preserving timed execution in

blockchain-based smart contract platforms. In: HiPC. pp. 265–274. IEEE (2018)
17. López-Pintado, O., Dumas, M., Garćıa-Bañuelos, L., et al.: Controlled flexibility

in blockchain-based collaborative business processes. Information Systems (2020)
18. Mendling, J., Weber, I., Aalst, W.V.D., et al.: Blockchains for business process

management-challenges and opportunities. ACM TMIS (2018)
19. Nahabedian, L., Braberman, V., D’ippolito, N., Kramer, J., Uchitel, S.: Dynamic

reconfiguration of business processes. In: BPM. pp. 35–51. Springer (2019)
20. Ryu, S.H., Casati, F., Skogsrud, H., Benatallah, B., Saint-Paul, R.: Supporting the

dynamic evolution of web service protocols in soa. TWEB (2008)
21. Xiong, F., Xiao, R., et al.: A key protection scheme based on secret sharing for

blockchain-based construction supply chain system. IEEE Access (2019)
22. Xu, X., Weber, I., Staples, M.: Blockchain patterns. In: Architecture for Blockchain

Applications, pp. 113–148. Springer (2019)


