Entropic Wasserstein component analysis - Université Jean Moulin Lyon 3 Accéder directement au contenu
Pré-Publication, Document De Travail Année :

Entropic Wasserstein component analysis


Dimension reduction (DR) methods provide systematic approaches for analyzing high-dimensional data. A key requirement for DR is to incorporate global dependencies among original and embedded samples while preserving clusters in the embedding space. To achieve this, we combine the principles of optimal transport (OT) and principal component analysis (PCA). Our method seeks the best linear subspace that minimizes reconstruction error using entropic OT, which naturally encodes the neighborhood information of the samples. From an algorithmic standpoint, we propose an efficient block-majorization-minimization solver over the Stiefel manifold. Our experimental results demonstrate that our approach can effectively preserve high-dimensional clusters, leading to more interpretable and effective embeddings. Python code of the algorithms and experiments is available online.
Fichier principal
Vignette du fichier
otpca.pdf (566.13 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04022713 , version 1 (10-03-2023)


  • HAL Id : hal-04022713 , version 1


Antoine Collas, Titouan Vayer, Rémi Flamary, Arnaud Breloy. Entropic Wasserstein component analysis. 2023. ⟨hal-04022713⟩
34 Consultations
24 Téléchargements


Gmail Facebook Twitter LinkedIn More