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Abstract: Climate change is a major contemporary phenomenon with multiple consequences. In urban
areas, it exacerbates the urban heat island phenomenon. It impacts the health of the inhabitants and the
sensation of thermal discomfort felt in urban areas. Thus, it is necessary to estimate as well as possible
the air temperature at any point of a territory, in particular in view of the ongoing rationalization of
the network of fixed meteorological stations of Météo-France. Understanding the air temperature is
increasingly in demand to input quantitative models related to a wide range of fields, such as hydrology,
ecology, or climate change studies. This study thus proposes to model air temperature, measured during
four mobile campaigns carried out during the summer months, between 2016 and 2019, in Lyon (France),
in clear sky weather, using regression models based on 33 explanatory variables from traditionally
used data, data from remote sensing by LiDAR (Light Detection and Ranging), or Landsat 8 satellite
acquisition. Three types of statistical regression were experimented: partial least square regression,
multiple linear regression, and a machine learning method, the random forest regression. For example,
for the day of 30 August 2016, multiple linear regression explained 89% of the variance for the study
days, with a root mean square error (RMSE) of only 0.23 ◦C. Variables such as surface temperature,
Normalized Difference Vegetation Index (NDVI), and Modified Normalized Difference Water Index
(MNDWI) have a strong impact on the estimation model. This study contributes to the emergence
of urban cooling systems. The solutions available vary. For example, they may include increasing
the proportion of vegetation on the ground, facades, or roofs, increasing the number of basins and
water bodies to promote urban cooling, choosing water-retaining materials, humidifying the pavement,
increasing the number of public fountains and foggers, or creating shade with stretched canvas.

Keywords: air temperature; surface temperature; LiDAR; multiple linear regression; Landsat 8; urban
heat island

1. Introduction

Climate change is a major current phenomenon with multiple environmental, social and economic
consequences [1]. In urban areas, it exacerbates the urban heat island (UHI) phenomenon [2,3] which
is characterized by a difference in temperature between an urban area and the surrounding rural areas.
In this case, the temperature in urban areas is higher than in rural areas, particularly at night [4,5].
The factors that contribute to heat intensification and UHI can be explicated mainly by the surface
factors linked to the substitution of water surfaces, vegetation cover, and wetlands by artificial areas,
causing low evaporation and evapotranspiration [6–12]. Buildings made of low-albedo materials
with high thermal inertia capture, stock, and discharge the heat trapped with a thermal lag of several
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hours depending on the size and type of buildings and the climate [13]. This result is combined with
the effect caused by structures made of low albedo supplies with high thermal inertia, which absorb
and accumulate heat. The intensification of heat can also be caused by morphological parameters
related to urban roughness and the sky-view factor (SVF) [14–16]. Indeed, the roughness can cause a
diminution of the wind speed and the SVF can reduce the release of heat during the night [2]. Finally,
anthropogenic parameters such as industrial heat emissions, heating, transport, or air conditioning can
contribute as well to heat intensification [17–20], the “cities consume 78 percent of the world’s energy
and produce more than 60 percent of greenhouse gas emissions. However, they account for less than 2
percent of the Earth’s surface” [21].

These two climatic manifestations have consequences on the health of the inhabitants [22] and on
the sensation of thermal discomfort felt in urban areas [23,24]. Moreover, the increase in heat waves is
clearly demonstrated, whether we look at the duration, intensity, or frequency [25]. The effects of heat
waves are overlaid on the microclimatic characteristics of urban environments [26,27], as well as on the
increasing urbanization process of the population. This increasing urbanization has a significant impact
on urban microclimates and leads to warmer temperatures in cities [28–31]. One of the effects of the
combination of these events is an increase in the premature number of heat stress related deaths [32].
In this context, local public actors are trying to prevent and reduce the human risks potentially generated
by an increase in heat waves. Knowing and understanding the effect of the urban heat island is a key
requirement for smart and sustainable city design [33]. According to the US Department of Energy,
the United States spends $10 billion annually on energy to reduce the urban heat island effect [34].
In addition, mitigating urban overheating is an important financial issue since every 1 ◦C increase in
temperature leads to a 2% to 4% increase in electricity demand [35]. In some regions, this increase
would even vary between 0.45% and 4.6%, which would correspond to an additional electrical penalty
of about 21W per degree of temperature increase per person [36]. This difference in energy consumption
between urban and rural areas is mainly due to the fact that the cooling load of urban buildings is
13% higher than that of similar buildings in rural areas [37]. Thus, this relationship between electricity
consumption and temperature has been clearly established [38]. In addition, a study in Chicago showed
that adding 10% ground cover, or planting about three trees per plot of land, reduces energy costs by
about $50–$90 (about 45–80 euros) per year per home [39].

In addition, air temperature is a main variable in explaining environmental conditions, especially
urban conditions. It is also involved in many important ecological processes such as actual and potential
evapotranspiration, net radiation, or the distribution of species [40]. Thus, knowledge of air temperature
at any point in the territory is increasingly in demand to feed quantitative models related to a wide range
of fields, such as hydrology, ecology [41], or climatology [42–44].

Consequently, the comprehension of air temperature models is essential for multiple applications in
hydrology, land-use planning, or public health. Accurate knowledge of temperatures is a necessity both
for the environment and for health policies, particularly in urban areas, which can contribute to improved
urban planning in the context of UHI mitigation, and the creation of urban cooling islands (UCIs).

Thus, it is necessary to estimate the air temperature at any point in a territory as well as possible.
This knowledge is directly dependent on the density of the measurement network, especially in view of
the current rationalisation of the network of fixed meteorological stations of Météo-France [45]. In France,
there are only a few agglomerations with their own network of fixed meteorological stations, such as
Rennes and Dijon [46,47]. The air temperature evolving on a metric scale, at less than 100 meters [48,49],
a very dense measurements network is needed. However, this is not the case in Lyon, which is the study
area. Consequently, this study proposes to model air temperature using traditionally used data, data
from remote sensing by LiDAR (Light Detection and Ranging), or Landsat 8 satellite acquisition and
data produced by mobile measurement. These mobile measurements are very useful, as there is not
yet a network of fixed weather stations sufficiently developed in Lyon, as in most large conurbations.
In addition, the use of information obtained from airborne sensors or satellites to observe the earth’s
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surface from the sky or from space is a methodology that effectively evaluates the spatial distribution of
land surface variables at the local and regional scales [50] and can be used for temperature modelling.

Urban air temperature can be estimated using different interpolation techniques such as spline [51,52]
and interpolation kriging. More recently, modelling by regression [51] or by neural networks and other
machine learning techniques has emerged [53]. Multiple studies have addressed this issue, either by using
classical spatial interpolations (deterministic [54] or stochastic [55]) or by multiple regressions [42,50,56–59].
Previous air temperature modelling studies in urban areas are mostly based on measurements from
fixed stations [42,47,52,60–62]. Studies involving modelling based on mobile measurements are less
common [49,63]. Moreover, there have been none in the study area, whether they involve modelling
from fixed stations or mobile measurements. Thus, this study has a double focus: to provide a first
modelling of the air temperature of the territory using mobile measurements.

Most of the studies based on mobile measurements have been carried out using automobiles,
for example in Portland (USA) [63], in Nancy (France) [44,64], in Los Angeles (USA) [65], in Hong-Kong [66],
in Brno (Czech Republic) [67], or in Sfax (Tunisia) [68–70]. However, there are many inherent limitations of
motorized transport. An increase in temperature may be observed when the car stops or slows down due
to red lights or traffic jams. The proximity of other cars combined with the immobility of the vehicle may
explain this. On the contrary, when the speed of the car increases, cooler temperatures may be observed
due to the cooling of the speed of travel. Thus, this measurement method limits the route to be monitored
because of the many one-way streets or pedestrian areas. Consequently, in this study, the choice to do
bicycle measurements was made. These bicycle measurements already exist but are not so frequent.
For example, they have been used in some areas such as in Rotterdam (Netherlands) [71], in Shenzhen
(China) [72], in Ohio [73], in Utrecht (Netherlands) [74], and on foot in Vancouver (Canada) [49].

Moreover, the explanatory variables used for modelling air temperature are, in many cases, those
commonly used such as latitude, longitude, altitude, and slope [60,75,76], or even the land use land
cover [77]. Only some studies integrate some remote sensing data such as Difference Vegetation Index
(NDVI) or Normalized Difference Moisture Index (NDMI) [49,63,78]. This study therefore proposes to
reproduce, as well as possible, the conditions encountered in the field as a function of the morphological
diversity very present in the urban environment using the largest possible sample of explanatory variables.

To summarize, the implications of this new approach for the understanding of urban micro-climates
are fourfold. Firstly, mobile measurements to acquire air temperature are used on the second French
conurbation, which has never been thermally modelled, despite marked thermal discomfort. Then,
this air temperature will be modelled with a very large sample of explanatory variables, including
classic topo climatic variables (altitude, longitude, latitude, slope, exposure, and so on), variables
derived from the characteristics of the urban morphology (sky view factor, variation in the height of
buildings, etc.), or variables linked to the occupation and nature of the soil (vegetation, moisture, water,
bare soil, etc.). One of the special features of this study for the acquisition of explanatory variables
is the use of very diverse but complementary techniques, notably through the use of LiDAR or the
analysis of data produced by the Landsat satellite. In a third step, a buffer analysis by simple linear
regression is performed to test the best calculation unit for each variable that could get the highest
coefficient of determination. Finally, the three modelling methods are used and compared. The first
two are a stepwise multiple linear regression and a partial least square linear regression, which has the
advantage of better integrating the collinear variables. The last one is the random forest method which
is a relatively recent machine learning technique.

Thus, this study proposes first to delimit the study area, then to address the data acquisition
methods and statistical procedures, and finally to analyse the results. This last part allows us to discuss
the contribution of each predictor variable to the modelling of air temperature and measurement error.
This research is aimed at improving urban planning in the context of climate change and mitigation
at UHI.
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2. Materials and Methods

2.1. Lyon: A Study Area Characterized by a Considerable Urban Morphological Diversity

The area of interest chosen for this study is the urban heart of the city of Lyon and part of the city
of Villeurbanne, on the border with the 6th district of Lyon (Figure 1). This area has the advantage of
grouping together a significant diversity of land use in an urban environment. It is mainly occupied
by continuous urban fabric (50%) of which 12.3% is discontinuous dense urban fabric, as well as
by industrial, commercial, military, or public units (19.5%). Water, roads (main and secondary),
and vegetation cover also occupy a significant surface of the territory, with respectively, 7.3%, 14.3%,
and 8.9% (Table 1).
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Table 1. Land use/land cover distribution in the study area.

Land Use/Land Cover Covered Surface Area (%)
Continuous urban fabric 50

Industrial, commercial, military, or public units 19.5
Roads (main and secondary) 14.3

Vegetation 8.9
Water 7.3

With just over 1.4 million inhabitants, this agglomeration of 59 municipalities is the second largest
in France after Paris. The study area is composed of a very dense urban environment (Figure 1). Natural
vegetation is therefore absent. There is, however, a very large park of 117 ha and urban green areas.
The main park in Lyon (the Tête d’Or Park, to the north in Figure 1) is the largest urban park in France.
It has vast expanses of lawn shaded by tall trees of various species, a lake, an island, and several
botanical gardens, including an alpine garden and a flower garden.

This study area is located in the south-east of France (45◦45′35”N, 4◦50′32”E). According to the
Köppen–Geiger classification [79,80], it has a continental temperate climate, fully humid with hot or
warm summer, depending on the year (Figure 2). The hottest months are July and August, with average
maximum temperatures of 27.7 ◦C and 27.2 ◦C, respectively. The wettest months are May and October
with 90.8 mm and 98.6 mm, respectively. The sunniest months are June, July, and August with 254.3 h,
283 h and 252.7 h, respectively (Figure 2).
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2.2. Data Acquired by the Measuring Instruments and Selected Days

Air temperature is the variable to be estimated at any point in the territory from several indicators.
The training sample of this variable is obtained from mobile measurement transects using high-precision
measuring devices, according to manufacturer’s data. The first equipment used is the EL-USB-1-RGC
(EasyLog From Lascar Electronic). It measures the air temperature continuously, with an accuracy of
+/− 1 ◦C (manufacturer’s data) and a minimum recording interval of 1 second. The second equipment,
the LOG 32 (from Dostmann electronic GmbH), records relative humidity and air temperature, with an
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accuracy of +/− 0.5 ◦C (manufacturer’s data) and +/− 3% (40 to 60%) and a minimum recording interval
of 2 seconds. The measurement campaigns were associated with a precision GPS (from Garmin, with a
high sensitivity GPS/GLONASS receiver and Quad Helix antenna) to record the geographical position
of the measurement.

The location of the points of all measurement campaigns was checked and corrected if necessary,
using a geographic information system (GIS), for example, to ensure that it was not located on the roof
of a building. Indeed, the dense urban environment can interfere with the geolocation of the position.
Streets in dense urban centers may be boxed in, with little visible sky.

In addition, the Météo-France site of the Direction Centre-Est (DIRCE) of Lyon-Bron, (45◦43′30”N,
4◦56′12”E and 197 m altitude), was used as a study site for a quality control campaign of the air temperature
and relative humidity measuring instruments. This station was chosen because it is Météo-France’s
professional weather station closest to our measurement campaigns. Hourly measurements synchronous
to the measurements of the Météo-France station were carried out from 28 June 2018 at 09:00 to 24
September 2018 at 14:00 (Figure 3). The comparison between site observation and mobile measurements
have been done at the same time, on a single second during the exact precise hour.
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Figure 3. Hourly measurements of temperature (◦C—red line) and humidity (%—blue dotted line) at
the Météo-France Lyon-Bron station from 06/28/18 to 09/24/18.

The measuring devices used in this study proved to be highly accurate since, after this comparison
at the Météo-France site over the summer 2018 period, the air temperature correlation of these two
different acquisition sources shows a lowest correlation coefficient of 0.981 for the air temperature and
0.977 for the relative humidity measured by LOG 32 (Table 2).

Table 2. Synthesis of the correlation coefficients, root mean square error (RMSE) and MSE from the
different measurement instruments used in relation to the Lyon-Bron station of Météo-France.

LOG 32 n◦1 LOG 32 n◦2 EL-USB-1-RCG n◦1 EL-USB-1-RCG n◦2
MSE: 0.892 MSE: 0.797 MSE: 0.516 MSE: 0.566

RMSE: 0.944 RMSE: 0.893 RMSE: 0.718 RMSE: 0.752Temperature (◦C)
R2: 0.983 R2: 0.981 R2: 0.989 R2: 0.987

MSE: 12.305 MSE: 11.970
RMSE: 3.507 RMSE: 3.459Humidity (%)

R2: 0.977 R2: 0.978
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The mobile measurements were taken on days when the Landsat 8 satellite was over the city, on clear
sky days only, i.e., with less than 10% cloud cover. These campaigns were spread out between 2016 and
2018, exclusively over the summer period: 30 August 2016, 1 August 2017, 19 July 2018, and 22 July
2019. Numerous measurement campaigns were carried out from 2016 to 2019 but only those four days
with similar weather conditions were used in this study. However, not all of them had similar weather
conditions. Moreover, in only one summer of a year, the set of days was too poor regarding the different
cumulative criteria, i.e., similar weather conditions and no clouds. Indeed, the weather conditions for
each day were similar: the standard deviation of the temperature was only 0.9 ◦C and 4.3%, for humidity,
2.3 m.s-1 for wind speed, 132 degrees for wind direction, and 3.7 hPa for pressure. The average weather
conditions for these indicators are 29.3 ◦C, 45.3%, 8.8 m.s-1, 260.8 degrees, and 1016.6 hPa, respectively
(Table 3). Respectively, these measurement campaigns yielded 573, 300, 393, and 397 measurement points
for air temperature and relative humidity (Figure 4).

Table 3. Meteorological parameters of the study days at the Lyon-Bron station at 12:00 noon (source:
Météo-France).

Temperature
(◦C)

Humidity
(%)

Wind Speed
(m/s)

Pressure
(hPa)

Wind Direction
(degrees) Start Finish

08/30/2016 27.7 46 9 1017.8 350 14:42 16:50
08/01/2017 29.4 52 10 1012.2 34 15:23 18:37
07/19/2018 29.8 42 5 1014.2 309 12:32 14:45
07/22/2019 30.1 41 11 1022 10 12:25 16:12

Mean 29.3 45.3 8.8 1016.6 260.8
Standard deviation 0.9 4.3 2.3 3.7 132.0

Minimum 27.7 41 5 1012.2 34
Maximum 30.1 52 11 1022 350

The routes travelled during the measurement campaigns vary slightly (Figure 4). In fact, besides the
technical reasons such as works or new developments that caused us to deviate from the route, we
wanted to maximize the morphological diversities crossed, making deviations to places of particular
interest due to their urbanistic characteristics (docks, the historic urban center, industrial sectors, etc.).

Additionally, air temperature measurement campaigns sometimes last several tens of minutes.
It was therefore necessary to make a correction based on a polynomial equation elaborated according
to the evolution of the day’s temperatures recorded at a time step of 10 minutes. This phase before the
data processing is essential and allows to bring all these air temperature measurements back to the
hottest hour of the day [74].

In addition, in order to have a very complete sample of temperature measurements, all the data
from the four field trips were pooled. This allows obtaining global results. Indeed, even if the weather
conditions are similar for the four days studied, some results may differ due to the different routes
carried out, which cross different urban morphologies. For example, in Lyon, the type of buildings and
the urban morphology are relatively different depending on whether one is in the east, with modern
buildings from the end of the 19th and 20th centuries, or in the west of the main river, with very old
buildings from the medieval or Renaissance period (Figures 1 and 4). This could explain why the
results between the days of 2019 and 2018, for example, were not strictly identical, although general
trends may emerge.

2.3. Morphological Descriptors Relevant to Air Temperature Estimation

Changes in land-use patterns related to the urban factory contribute to the spatial structuring of
the urban landscape, which also influence energy transmission and balance [81,82]. These changes are
considered a direct cause of the formation of the UHIs [83,84]. Thus, the relationship of changes in air
temperature to land use and land cover is apparent.
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In this study, thirty-eight explanatory variables contributed to the estimation of air temperature
over the study area [85–89]. They belong to various categories such as climate data from remote sensing,
topographic variables, vegetation indices, the presence of water, moisture, bare soil, buildings, radiation,
urban morphology, and proximity to various land uses (Table 4 and Appendix A). The acquisition
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sources were multiple and came from the Landsat 8 satellite (https://earthexplorer.usgs.gov/),
LiDAR (https://data.grandlyon.com/jeux-de-donnees/nuage-points-lidar-2018-metropole-lyon-format-
laz/donnees) points and other cartographic products downloaded from the open data platform of the
Greater Lyon.

Table 4. List of morphological descriptors used to estimate air temperature.
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2.4. The Statistical Procedure Followed

2.4.1. An Explanatory Buffer Zone, Which Varies According to the Indicator

The aim of this study is to model air temperature using the linear regressions, multiple and partial
least square regressions, and nonlinear regression by the random forest regression, from selected predictors.
Initially, the scale with the best correlation between air temperature and explanatory variables was selected
for each indicator based on a proximity buffer analysis (5 to 1000 m; Figure 5). Thus, the selected buffer zone
varies for indicators of the presence of vegetation, water, humidity, bare soil and buildings, radiation indices,
proximity to land use, urban morphology, and finally climate data (Table 5). Each of the measuring points
was compared with the average of the indicator concerned, according to the size of the buffer considered.

For example, the process followed for the 5-meter buffer is as follows: 1◦/creation of a 5-meter
buffer around each point; 2◦/calculation of the area (for vegetation, water surfaces, etc.), length
(railways), average (spectral indices), or standard deviation (STD Building Height) of the indicator in
this buffer; 3◦/calculation of the Spearman correlation coefficient between the temperature measured at
the point and the indicator; and 4◦/repeat the operation for all the indicators and for all the buffers.
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Figure 5. Example of variation in the correlation (coefficient of determination) between predictor and
air temperature as a function of study scale.
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Table 5. Buffer zones selected for each explanatory indicator.
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2.4.2. Three Complementary Regression Methods in Modelling Use 

Three regression methods of air temperature modelling are compared in this study. These are 
two linear regressions: multiple [42,50,56] and partial least square [90], and one non-linear regression: 
random forest [91,92]. The aim is to select the best regression for this modelling. This evaluation is 
essentially carried out by comparing the coefficients of determination and the roots of the root mean 
square error (RMSE) obtained for the samples. The conditions of use for each of the regressions were 
also verified. 

Multiple linear regression (MLR) is a data modelling method that requires several statistical 
steps before its application [93]. First, it is necessary to verify the normal distribution of the series in 
the dataset using the Shapiro–Wilk test (applies to samples of less than 5000 observations) [94]. This 
test has been invalidated, so the Spearman correlation matrix was used. It allows redundant variables 
not to be included in the regression model. One of the two indicators for which the pair has |r|>0.7 
in the Spearman correlation matrix and a Variance Inflation Factor (VIF) > 5 was removed [95,96]. 
Finally, after removing the correlated variables, multiple linear regressions are carried out on about 
20 variables, between 21 for the August 30th, 2016, and 27 for the August 1st, 2017 (Table 6).In addition, 
a holdout cross-validation was performed because of its ability to detect multiple regression 
overfitting (80% learning data and 20% validation data) [97]. 
  

2.4.2. Three Complementary Regression Methods in Modelling Use

Three regression methods of air temperature modelling are compared in this study. These are two
linear regressions: multiple [42,50,56] and partial least square [90], and one non-linear regression: random
forest [91,92]. The aim is to select the best regression for this modelling. This evaluation is essentially
carried out by comparing the coefficients of determination and the roots of the root mean square error
(RMSE) obtained for the samples. The conditions of use for each of the regressions were also verified.

Multiple linear regression (MLR) is a data modelling method that requires several statistical steps
before its application [93]. First, it is necessary to verify the normal distribution of the series in the
dataset using the Shapiro–Wilk test (applies to samples of less than 5000 observations) [94]. This test
has been invalidated, so the Spearman correlation matrix was used. It allows redundant variables
not to be included in the regression model. One of the two indicators for which the pair has |r|>0.7
in the Spearman correlation matrix and a Variance Inflation Factor (VIF) > 5 was removed [95,96].
Finally, after removing the correlated variables, multiple linear regressions are carried out on about
20 variables, between 21 for the 30 August 2016, and 27 for the 1 August 2017 (Table 6).In addition,
a holdout cross-validation was performed because of its ability to detect multiple regression overfitting
(80% learning data and 20% validation data) [97].

In a complementary way to the multiple linear regression (MLR), partial least square regression
is a method that is applied when a large number of explanatory variables are present and when these
variables are likely to show strong collinearities among themselves [98]. Thus, this method allows us to
model and predict air temperature values as a function of a linear combination of several quantitative
(or qualitative) explanatory variables, overcoming the constraints of linear regression with respect to
the distribution and number of variables included. Therefore, there is no need to remove the collinear
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variables. The model gives a value for each Variable Importance for the Projection (VIP). An explanatory
variable is considered important when the VIP is greater than 0.8 [99]. A standardized coefficient is then
generated for each of them [100].

Table 6. Non-collinear variables selected for multiple linear regressions per study day.

After Spearman Correlation Matrix and VIF
Variables 08/30/2016 08/01/2017 07/19/2018 07/22/2019

Surface temperature (◦C) X X X X
UTFVI

Sunshine duration of the study day
Radiation received for the study day X X X

NDVI X X X
SAVI
EVI X X X X

Tasseled Cap greenness (GVI) X
Density of low vegetation X X X X

Density of medium vegetation X X X X
Density of high vegetation X X X X

MNDWI X X X X
NDWI X

Tasseled Cap Wetness X X X X
NDMI X
NDBaI X

BI X X X X
EBBI

Density of bare soil X X X X
Spectral radiance

Emissivity X X
Tasseled Cap Brightness X X X

NDBI X
UI
IBI X X

Building Density X X X X
Digital Elevation Model X X X X

Slope (◦) X X X X
Longitude X
Exposure X X X
Curvature X X X X

Sky View Factor X X X X
STD Building Height X X

Distance to railway tracks X X X X
Distance to points of tourist interest X X X

Distance to subway entrances X X X
Distance to fountains X X X

Water area X X X X
Final Number 21 27 22 26

The third type of regression tested is the random forest regression. This is a predictive model using binary
decision trees [101]. From an observation sample, the bagging method will generate several possibilities
before selecting only one. This machine learning technique [102] is based on Classification and Regression
Trees (CART). These are constructed from different bootstrap samples, randomly selected with random
discounting, in order to obtain, after aggregation, a robust and efficient set of air temperature predictors [103].
The importance of each variable is calculated by the mean increase in error of a tree in the forest, i.e., when the
values of each variable are randomly swapped in the out-of-bag (OOB) samples. The variables used in the
nonlinear regression, random forest, to model air temperature are derived from the selection of multiple linear
regressions for each day. The random t forest classification and regression has the advantage of reducing
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white noise, and thus potentially improving the correlation coefficients and RMSE already obtained by
multiple linear regression. In addition, the number of variables in the bagging and the number of trees used
are user-defined parameters. When the number of trees increases, the general error converges to the same
value. Overfitting is then not a problem due to the large numbers law. Despite this, the number of analysed
trees must be limited in order not to excessively increase the computation time (1):

c× T × v× (M×N × log N) (1)

where c is a constant, T is the number of trees in the set, M is the number of variables, and N is the
number of samples in the training data set [104]. In this work, the classifiers were optimized with 80
decision trees and were trained with the same number of pixels in each category. The general error of
the models converged around 80 decision trees (Figure 6). Therefore, a more complex model would
have required more computation time without improving the classification.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 39
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In addition, Lasso regression was not applicable in this study. Lasso regression is only used when
the number of predictors is greater than the number of observations [105,106]. Here, though, the number
of observations was much higher than the number of predictors. In addition, many explanatory variables
were included.

2.4.3. Quality Control on Modeling by Spatial Identification of Error Clusters

The spatial autocorrelation of the difference between the modelled air temperature and the air
temperature measured by the mobile measurements was analyzed, on one hand, using the Anselin



Remote Sens. 2020, 12, 2434 14 of 35

Local Moran I spatial association indicator (LISA) [107], and, on the other hand, using the degree of
clustering of high and low intensity values by the Getis Ord General G (Gi*) [108,109].

The LISA makes it possible to group together, for statistically significant results (p < 0.05),
the similarity of a spatial unit with its neighbours. It allows identifying spatial aggregates of entities
with high or low values as well as spatial outliers. A cartographic representation showing a cluster
type for each statistically significant entity is thus obtained. With a geographic information system
(GIS), a statistically significant group of high values (HH), a group of low values (LL), an outlier in
which a high value is surrounded mainly by low values (HL), and an outlier in which a low value is
surrounded mainly by high values (LH) is distinguished.

The local application of the general G statistic is the Getis Ord Gi* statistic. It is used to identify
statistically significant (p < 0.05) spatial clusters of high and low intensity. Thus, for positive Z scores,
the higher the Z score, the stronger the cluster of high intensity values (error overestimating air
temperature). On the contrary, the lower the negative Z-score, the higher the group of low intensity
values (error underestimating the air temperature).

In order to summarize the methodology, a general diagram of the study has been inserted (Figure 7).
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3. Results

3.1. Multiple Linear Regression Modeling

After removing the collinear variables for each day, the predictors involved in air temperature
modelling provide significant coefficients of determination. These ranged from 0.60 for 22 July 2019,
to 0.89 for 30 August 2016, with RMSEs of only 0.96 ◦C and 0.23 ◦C, respectively. Moreover, each variable
retained in the model was characterized by a normalized coefficient that corresponded to the weight of
this explanatory variable. This weight varies according to the study days (Figure 8). The probability
associated with Fisher’s F (Pr>F) was always less than 0.05 and very often less than 0.0001.
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For example, for 19 July 2018, the variables contributing to a positive impact on the model were
proximity to subways, Bare Soil Index (BI), longitude, Tasseled Cap Transformation (TCT) wetness, low
vegetation density, and Normalized Difference Bareness Index (NDBaI). Variables negatively impacting the
model are sky view factor, high vegetation density, proximity to tourist attractions, and soil density. From the
equation obtained, it is therefore possible to model the air temperature continuously. The resolution can be
adapted to the display and the purpose of the study. For example, a resolution of 10 meters was chosen for
Figure 9 (Figure 9). It can be seen in Figure 9 that some areas are cooler or hotter than others on the map.
This is directly related to the equation used in the modelling, including the explanatory variables included,
as shown in Figure 8. Thus, for example, in Figure 9, cold spots at some locations are related to the density
of tall vegetation or water surface. Hot spots, in contrast, would be related to low vegetation density, soil
density, or BI. Thus, the greater the presence of these variables, the greater the chance of detecting a hot or
cold spot. This confirms the results of previous studies showing in particular the cooling power of tall
vegetation [43,110], water surfaces, or urban density [33,111,112].
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The results for the sample with all measurements for the four outputs (Figure 10) show an R2

of 0.65 and an RMSE of 1.54. The results for the sample with all measurements for the four outputs
(Figure 10) show an R2 of 0.65 and an RMSE of 1.54. The RMSE is logically slightly higher than for the
single day models due to the larger sample of measurements and greater morphological diversity, even
though the weather conditions remain similar. These results confirm the general trends observed at
day scales. In particular, the cooling effect of variables such as water density (normalized coefficient of
–0.35; Figure 10), densely vegetated areas (–0.11 for NDVI and –0.09 for the density of high vegetation),
road embankment (–0.08 for SVF), and humidity (–0.05 for Modified Normalized Difference Water
Index (MNDWI)) can be found. The presence of proximity to tourist areas can be explained by the fact
that these areas are mostly made up of green spaces or historic buildings in old Lyon.
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The variables contributing to urban warming were logically surface temperature and emissivity
(normalized coefficients of 0.53 and 0.26, respectively; Figure 10) as well as indicators of the built
environment and the absence of medium or high vegetation density (0.13 for the NDBaI, 0.12 for the
Index-based Built-Up Index (IBI), and 0.23 for the density of low vegetation).

3.2. Partial Least Square Regression Modeling

Partial least square (PLS) regression modeling did not show much consistency in air temperature
prediction since the mean coefficient of determination for all four study days is only 0.62, with a
maximum of 0.79 for 30 August 2016, and a minimum of 0.53 for 22 July 2019 (Table 7). In addition,
a large number of explanatory variables were retained, with a maximum of 26 for the day of 22 July
2019. Some variables influenced the model both positively and negatively as a function of the day.
For example, the MNDWI had a significant positive impact for 30 August 2016, and a negative impact
for 1 August 2017, 19 July 2018, and 22 July 2019. As a result, the air temperature modeling results
were much less relevant than by multiple linear regression.
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Overall PLS modelling based on the measurements of the four outputs provided results relatively
similar to multiple linear regression, with an R2 equal to 0.699 and an RMSE of 1.503. They also confirmed
the dominant role of surface temperature. This variable had a VIP of 2.2. This is followed by the density
of water areas (VIP = 1.81), the density of low vegetation (1.43), the NDVI (1.15), and the humidity indices
(1.03 for the MNDWI and 1.01 for the TCT Wetness). These results are in agreement with those obtained
through multiple linear regression (Section 3.1).

Table 7. Statistical parameters of the three explanatory variables used in air temperature modelling by
partial least square linear regression.

Date R2 MSE RMSE Variables Model Parameter in
Absolute Value Impact on the Model

0.79 0.11 0.33
LST 0.0675 Negative

NDVI 1.71 Positive08/30/2016
MNDWI 4.53 Positive

0.77 0.03 0.18
BI 0.58 Positive

NDMI 0.51 Negative08/01/2017
NDBI 0.51 Positive

0.37 0.09 0.07
Emissivity 2.1128 Negative
Longitude 1.3906 Positive07/19/2018

NDBaI 1.2262 Positive

0.,53 1.13 1.06
Emissivity 7.4782 Positive

BI 3.0472 Positive07/22/2019
NDBaI 2.5931 Positive

Mean 0.62 0.34 0.41

3.3. Random Forest Regression Modeling

For the four study days, the coefficients of determination obtained were strong: 0.98 for the 30
August 2016, 0.96 for the 1 August 2017, 0.95 for the 19 July 2018, and 0.92 for the 22 July 2019 (Table 8).
Thus, on average, a coefficient of determination of 0.95 was obtained, with a RMSE of only 0.17 ◦C and
an out-of-bag (OOB) error of 0.05.

Table 8. Summary of Coefficients of Determination, Out-Of-Bag Error and Root Mean Square Error of
Random Forest Classification, and Regression Modeling Errors.

Date R2 Out-Of-Bag RMSE
08/30/2016 0.98 0.0071 0.08
08/01/2017 0.96 0.0045 0.07
07/19/2018 0.95 0.0071 0.08
07/22/2019 0.92 0.19 0.44

Mean 0.95 0.05 0.17

In addition, the measure of importance for each of the variables was measured by the mean
increase in error of a tree in the forest when the observed values of that variable were randomly
swapped in the out-of-bag samples (OOB; Figure 11). As a reminder, an increase in errors allowed us
to know the importance of the variable in the modeling.

Global random forest modelling based on all days highlighted the dominant role of surface temperature,
which had a mean error increase of 102.5 (Figure 12). This was followed by emissivity, density of low
vegetation, IBI, and density of high vegetation with mean error increases of 26.9, 23.5, 16.2, and 16.2,
respectively (Figure 12). These results are in agreement with those obtained using multiple linear
regression and PLS regression.
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4. Discussion

4.1. Implication of Important Predictors in Urban Air Temperature Modeling

The results of the simple regressions (Section 2.4.1 and Figure 4), the multiple linear regression
(Section 3.1), the Random forest regression (Section 3.3), and to a lesser extent the PLS regression
(Section 3.2) make it possible to identify the parameters that positively and negatively influence urban air
temperature. Naturally, surface temperature is frequently used in air temperature modelling (22 July 2019;
1 August 2017; and 30 August 2016; Figure 8) with very high weights (normalized coefficient of 0.67
for the day of 1 August 2017; Figure 8), mean error increase of 59.2 and 48.1 for the days of 30 August
2016, and 1 August 2017, respectively (Figure 11, for example). This is confirmed by the overall results of
multiple linear regression and random forest modelling. Its normalized coefficient is 0.53 and its mean
error increase is 102.5. However, this is not an urban morphological descriptor on which designers, urban
planners, or politicians can directly act. The urban parameters highlighted by the models that can be
influenced in planning operations to combat extreme temperatures in cities mainly concern green and
blue solutions, and grey solutions [113–115].

Modelling results indicate that the factors that contribute to increasing temperatures in urban areas
are related to building density. Indeed, regarding the density of buildings, for example, the BI had a
normalized coefficient of 0.22 on 22 July 2019, and 0.34 on 19 July 2018. The TCT Brightness, which
refers to bare, partially covered or waterproofed soils (such as rocky outcrops, concrete, gravel, asphalt,
etc.) had a normalized coefficient of 0.21 for 22 July 2019, and a mean error increase of 31.5 for 30 August
2016, and 8.4 for 22 July 2019. The IBI had a coefficient of 0.14 and a mean error increase of 30.5 for
1 August 2017. To a lesser extent, we also found the presence of low vegetation (and thus the absence of
high vegetation), which had normalized coefficients of 0.22 and 0.15 for the days of 22 July 2019 and
19 July 2018, respectively, and mean error increases of 15 and 35 for 30 August 2016, and 19 July 2018,
respectively. This was confirmed by the overall results of multiple linear regression and random forest
modelling. Its normalized coefficient was 0.23 and its mean error increase is 23.5 (Figures 10 and 12).

By contrast, the factors that favor the decrease in urban temperatures were related to the presence
of vegetation, humidity, and surface water. Thus, high vegetation density had a high cooling power in
the models with normalized coefficients of −0.6 for 22 July 2019 and −0.15 for 19 July 2018, and a mean
error increase of 19 for 22 July 2019. These results are consistent with those of the global modelling
using multiple linear regression and random forest. Its normalized coefficient is −0.09 and its mean
error increase is 16.2 (Figures 10 and 12).

In addition, NDVI was found with normalized coefficients of −0.5, −0.18, and −0.11 and mean
error increases of 20, 8, and 7.6 for the days of 2016, 2017, and globally, respectively, but also TCT
greenness (−0.14 for 22 July 2019). Moisture also had a cooling effect through the TCT wetness (with
normalized coefficients of −0.18 and −0.17 and mean error of 6 for 1 August 2017, and 19 July 2018,
respectively) or proximity to fountains (with normalized coefficient of −0.09 and mean error of 10.4 for
1 August 2017). Finally, the density of water area has a negative impact on the model with normalized
coefficients of −0.29, −0.20, and −0.35, and mean error increases of 18.9, 41.4, and 10.7, respectively,
for 22 July 2019, 30 August 2016, and in a global way, as well as the NDWI (with a normalized coefficient
of −0.27 and mean error of 11.7 for 22 July 2019) or the MNDWI (with respectively for 30 August 2016,
and 19 July 2018, a mean error of 19 and 48.6).

To our knowledge, this is one of the studies aimed at modelling air temperature in a morphologically
contrasting urban environment, with areas of unequally dense habitat, two rivers, a historic center
and the largest urban park in France (Figure 1), which uses the most extensive sample of explanatory
variables, with classic data, LiDAR data, and data from remote sensing. This study has shown the
interest of the complementary use of the latter two types of data, in particular LiDAR for a precise
view of vegetation densities (high, medium, or low) but also remote sensing for surface temperature
and water, humidity, and vegetation indices to a lesser extent. While we expected very satisfactory
results with random forest modelling, confirming the results of previous studies [63,97,116], we were
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surprised to note also the very high performance of the classical multiple linear regression and PLS
regression, with very low RMSE and often below 0.5 ◦C.

These results confirm the roles played by vegetated spaces [43,110], building density, and water
surfaces in previous studies [33,111,112] and confirm mitigation practices based on green and blue
space solutions [113]. This study also highlighted the relatively low cooling power of low vegetation
during the sunny afternoons of the measurement campaigns. Even if we had observed this during the
measurement campaigns, this had yet to be confirmed by the models. This weakness can be explained
by the density of vegetation, which is not high enough to promote sufficient evapotranspiration for
cooling, but above all by a lack of shade compared to the tall vegetation.

Finally, the influence of buildings on air temperature is generally considered within a radius of
500 m [117–120]. However, in this study, it was found that the buffers with the best correlation between air
temperature and building density, based on LiDAR data, were 5 and 10 m. Furthermore, the vegetation
density obtained from LiDAR, which explains air temperature in an optimum way, was within a radius of
50 to 200 m, regardless of its height (low, medium, or high; Figure 5). This also corresponds to a smaller
buffer size than that used in previous studies [46]. On the other hand, the buffer size for the bare-soil
surfaces was between 50 m and 1000 m depending on the indicator (respectively density of bare-soil and
BI, and NDBaI, and Enhanced Built-Up and Bareness Index (EBBI)). In this latter case, this size is similar
to that of previous studies [46].

Consequently, this methodology based on mobile cycling measures, buffer analysis and regressions
using complementary explanatory variables are fully applicable to other cities. However, we recommend
testing the choice of scales for these variables, all the more so if it is not an old European city with
morphological urban similarities to Lyon, although the optimal radii found in this study coincide with
previous similar experiences in other cities.

In addition, it can be noted that similar spectral indices significantly correlate with the air temperature
at the same scale because of the similar physical meaning represented by the indices. For example,
vegetation indices such as TCT greenness, NDVI, and Soil Adjusted Vegetation Index (SAVI) are most
relevant between 500 and 1000 m, as are water indices (NDWI or MNDWI), building indices (NDBI
and Urban Index UI) and bare soil indices (NDBaI and TCT Brightness).

4.2. Spatialization of Error

The modelling error found is minimal for multiple linear regression and random forest modelling.
For all study days, the median for multiple linear regression modelling was 0.02 ◦C and for random forest
classification and regression modelling was 0.002 ◦C (σ of 0.44 and 0.17, respectively; Table 9). In contrast
to the closeness of the median and mean values by these two modelling methods, the agreement is
stronger for multiple linear regression than for random classification and regression forest (Figure 13).

Table 9. Multiple linear regression (MLR) and random forest regression (RDF) model error descriptive statistics.

MLR RDF
Biggest negative error (◦C) −2.23 −0.99

Biggest maximum error (◦C) 2.50 1.29
First Quartile −0.17 −0.05

Median 0.02 0.002
Third Quartile 0.17 0.05

Mean 0.01 0.003
Variance 0.19 0.03

Standard deviation 0.44 0.17

When looking at the location of errors in air temperature modelling between the multiple linear regression
method and the random forest, similarities between the two are observed. The models overestimate the
air temperatures towards the water areas on Confluence (south of the peninsula) and near the Perrache
train station. They underestimate the air temperature in the streets in the embankment, near green areas,
and south of the left bank of the Rhône (Figure 14).
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Figure 14. Location of the modeled measurement error of the air temperature by multiple linear regression
(left) and by random forest (right) for all the study days (source: Data Grand Lyon).

If we analyze the location of these errors day by day, we notice that for the 30 August 2016,
the multiple linear regression model overestimates the air temperatures near the water areas, on the
bridges and south of the left bank of the Rhône. Conversely, it underestimates this physical magnitude
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on open spaces such as Bellecour Place. For 1 August 2017, 19 July 2018, and 22 July 2019, the model
overestimates the air temperature also near the waterways and on the bridges but also on open spaces.
In contrast, the model suggests that the streets in the embankments are cooler than in the mobile
in situ measurements (Figure 15). The same can be seen in the random forest modelling (Figure 16).
In addition, an overestimation of air temperature near the green spaces of the Tête d’Or Park was
observed for the days of 30 August 2016, 19 July 2018, and 22 July 2019.Remote Sens. 2020, 12, x FOR PEER REVIEW 20 of 39 
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4.3. Grouping of Similar Errors

Spatial groupings of statistically similar values of the differences between modelled and measured
air temperatures are evaluated using LISA (Figure 17) and Gi* (Figure 18). Between the two regression
methods (linear multiple and random forest), similarities in the location of error clustering types by
LISA and Gi* are observed. As a reminder, for LISA, the distinction is made between a statistically
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significant cluster consisting of high values only (HH), a cluster of low values only (LL), a cluster in
which a high value is surrounded mainly by low values (HL), and a cluster in which a low value is
surrounded mainly by high values (LH).
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Firstly, using the LISA method, clusters of small errors (LH), underestimation of the model in relation
to the measured values, can be identified on the left bank of the Rhône, in the steep streets of the peninsula
and Vieux Lyon district, and on bridges. Areas with a high value (HL), i.e., an overestimation of the
model, can be observed near the Perrache train station, in the Confluence area, and near the green spaces
of the Tête d’Or park (Figure 17).

Secondly, groupings of the errors of underestimation and overestimation of the air temperature
modelling compared to that measured by the Gi* method are located in areas similar to the LISA. These
recurring areas for statistically low negative z-score values are the steep streets of the peninsula and
Old Lyon and the south of the left bank of the Rhône. The statistically high positive z-score values are
the Perrache train station and Confluence district, the proximity to the green spaces of the Tête d’Or
park and the Morand bridge (Figure 18).

4.4. Limits and Future Research Outlooks

When looking at the positive or negative effects of variables on air temperature, it can be noticed
that some can vary depending on the day being studied. For example, on 22 July 2019, the density of
ground affects the air temperature positively, but on 19 July 2018, it had a negative impact. This is
probably related to the route that differs between the two rides. The 2018 route is almost twice as long
as the 2019 route (Figure 4) and the 2019 route passes through different neighborhoods, especially
with regard to soil characteristics. This would indicate, among other reasons, why the results may
differ depending on the days studied. In addition, the data provided by LiDAR concerning the ground
is of a different nature, such as impermeable concrete or sandy soil for example, and may fluctuate
depending on the routes taken. The same observation can be made for the proximity to metro stations.
The proximity of the subway entrances is a variable that can affect air temperature in opposite ways.
In our own experience, some subway entrances seem to give off fresh air and other entrances seem
to give off warm air. When looking at the overall results of multiple linear regression modelling, it
should be noted that these two variables are not included in the explanation of air temperature for
these reasons.

The number of days processed for this study is one of its limitations. Indeed, only four days were
analyzed. This limited number was partly due to the availability of quality (cloud-free) data from the
Landsat satellite, but also due to the reduced occurrence of similar days in terms of climatic conditions.
Another point of constraint is that modelling only took place in dense urban centers.

Consequently, we can argue on two perspectives: the spatial and temporal scope of this study.
In the first case, it would be interesting to extend the mobile measurements in the periphery, or even
in the rural areas, to be able to model the temperature in any point of the territory and compare the
urban and the outskirts results. Secondly, it would be necessary to extend this analysis not only in
summer, but in all seasons and at different moments of the day and at night, and for different weathers.
Therefore, a global model could be built on observations from all the experimental dates rather than
separating models by date.

In addition, some other data satellites may be used. For example, the use of the Sentinel 2 satellite
with a 10 m resolution may help to increase the model results using sharper spectral indices, like NDVI
or NDBaI.

5. Conclusions

The objective of this study was to identify the most appropriate and efficient regression to model
urban air temperature based on numerous explanatory variables of various natures. The integration of
these predictors in multiple regressions and machine learning method showed very satisfactory results.
In addition, this methodology can be applied in other study area. The proportion of the variance
explained by multiple linear regressions in air temperature modeling for each study day is globally
high, with coefficients of determination ranging from 0.60 to 0.89. The results are even better when the
random forest method is used. Indeed, the average coefficient of determination is 0.95 for a RMSE of
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only 0.17 ◦C and an OOB of 0.05. On the opposite, the PLS regression provides a weaker coefficient of
determination for the separate days.

For all these models, there are recurring dominant variables such as NDVI or surface temperature.
Consequently, the integration of satellite predictors is a definite advantage in urban microclimate
modelling by linear regression model based on mobile air temperature measurements. In this study,
Landsat 8 data were used, but one prospect for improvement would be to use higher resolution
Sentinel data.

When we look at the overall results for all days combined, the same trends emerge. The multiple
linear regression always gives very satisfactory results with an R2 of 0.65 and an RMSE of 1.54 ◦C, on a
par with the PLS regression which shows an R2 of 0.70 and an RMSE of 1.50 ◦C. The global random
forest modelling based on all days, however, proposes superior results with a high R2 of 0.98 and an
RMSE of 0.33 ◦C. This modelling method is therefore the most efficient of the three tested for this study
area and this sample of measurements. However, it is less accessible than the other types of multiple
regressions tested and requires a greater statistical investment.

One of the strengths of this study is also the fact that it is relatively easily applicable to other areas.
The equipment used for mobile measurements is not very expensive. All that is needed is a radiation
shelter, a GPS, and a temperature and relative humidity recorder. All the explanatory variables used in
this study, such as land use area or satellite data, are freely available. GIS and statistical processing
can also be freely available if one wishes to dispense with paying software. From a practical point of
view, the most complicated part of the study remains the mobile field measurements, which are very
time-consuming. Indeed, they have to be synchronized with the passage of Landsat and it is necessary
to have similar and favorable weather conditions, with a completely clear sky and no wind.

The results of this study confirmed the cooling roles played by green areas and water surfaces and
the problems linked to building density without vegetation in the urban overheating issue. In addition,
low vegetation displayed low cooling power, mainly because of an absence of shade compared to the
high vegetation and the low-density vegetation providing little evapotranspiration. This highlights
the real need to use green and blue spaces solutions in order to limit the UHI and improve the
thermal comfort.
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Appendix A. Explanatory Variables Selected to Estimate Fine-Scale Air Temperature

Data
Category

Variables Used for the
Input (Units)

Expected Effect of the
Variable on the Model

Calculation Method Reference

Surface temperature
(◦C)

Positive Single channel algorithm [49,89,121,122]

UTFVI
Urban Thermal Field

Variation Index)
Positive UTFVI = Ts−Tmean

TS
[87,123]

Climatic data
from remote

sensing
Brightness

temperatures (◦C)
Positive Brightness = K2

Ln
( K1

Ls+1

) [124,125]
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Data
Category

Variables Used for the
Input (Units)

Expected Effect of the
Variable on the Model

Calculation Method Reference

NDVI
Normalized Difference

Vegetation Index
Negative NDVI = NIR−RED

NIR+RED [85,126,127]

SAVI
Soil Adjusted

Vegetation Index
Negative SAVI = NIR−RED

NIR+RED+L × (L + 1) [126]

EVI
Enhanced Vegetation

Index
Negative

EVI =
G× NIR−RED

NIR+C1×RED−C2×BLUE+L
[126]

Tasseled Cap
greenness or GVI

Negative

TCT G
= Blue band× coe f Gr + Green band
×coe f Gr + Red band× coe f Gr
+NearIn f rared band× coe f Gr
+SWIR1 band× coe f Gr
+SWIR2 band× coe f Gr

[128]

Density of low
vegetation

Positive

LasTool Software (LasTool:
http://lastools.org/)

Vegetation quantity according to
different buffer size

[46,97]

Density of medium
vegetation

Negative
LasTool Software

Vegetation quantity according to
different buffer size

[46,97]

Vegetation
index

Density of high
vegetation

Negative
LasTool Software

Vegetation quantity according to
different buffer size

[110]

NDWI
Normalized Difference

Water Index
Negative NDWI = Green−NIR

Green+NIR [85,126]
Water

presence
index

MNDWI
Modified Normalized
Difference Water Index

Negative MNDWI = Green−SWIR1
Green+SWIR1 [126]

Tasseled Cap Wetness Negative

TCT W = Blue band× coefWr
+ Green band
× coefWr + Red band
× coefWr
+ NearInfrared band
× coefWr
+ SWIR1 band
× coefWr
+ SWIR2 band
× coefWr

[128]

Moisture
index

NDMI
Normalized Difference

Moisture Index
Negative NDMI = NIR−SWIR1

NIR+SWIR1 [86,88]

NDBaI
Normalized Difference

Bareness Index
Positive NDBaI = SWIR1−TIRS

SWIR1−TIRS [85,126]

BI
Bare Soil Index

Positive BI = (SWIR1+RED)−(NIR+BLUE)
(SWIR1+RED)+(NIR+BLUE) [126]

Bare soil
index

EBBI
Enhanced Built-Up
and Bareness Index

Positive EBBI = SWIR1−NIR
10
√

SWIR1+TIRS1 [126]

http://lastools.org/
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Data
Category

Variables Used for the
Input (Units)

Expected Effect of the
Variable on the Model

Calculation Method Reference

NDBI
Normalized Difference

Built-Up Index
Positive NDBI = SWIR1−NIR

SWIR1+NIR [85,126]

UI
Urban Index

Positive UI = SWIR2−NIR
SWIR2+NIR [126]

IBI
Index-based Built-Up

Index
Positive IBI =

NDBI− (SAVI+MNDWI)
2

NDBI+ SAVI+MNDWI
2

[126]

Building
index

Building density Positive
LasTool Software

Building quantity according to
different buffer size

[46,97]

Slope (%)
Depending on the

context

From the DEM (RVT 1.3
Software (RVT 1.3: https:

//iaps.zrc-sazu.si/en/rvt#v))
[129,130]

Exposure (◦N)
Depending on the

context
From the DEM (RVT 1.3

Software)
[131]Topographic

Curvature
Depending on the

context
From the DEM (RVT 1.3

Software)
[132,133]

Water area Negative
Water area according to different

buffer size
[134,135]

Distance to fountains Negative
Euclidean distance to nearest

fountain
Distance to subway

entrances
Depending on the

context
Euclidean distance to the
nearest subway entrance

Distance to points of
tourist interest

Negative
Euclidean distance to the

nearest tourist point

Proximity to
land

occupations

Distance to railway
tracks

Positive
Length of the railways

according to different buffer size

Spectral Radiance Negative
Lλ = Lmin(λ) +(

Lmax(λ) − Lmin(λ)

) Qdn
Qmax

[136]

Emissivity Negative ∈= LT
LnT

[137]

Radiation
index

Tasseled Cap
Brightness

Positive

TCT B = Blue band× coe f Br
+Green band
×coe f Br + Red band
×coe f Br
+NearIn f raredband
×coe f Br
+SWIR1 band
×coe f Br
+SWIR2 band
×coe f Br

[128]

Sky View Factor
Depending on the

context
RVT 1.3 Software [16,111,138]

Urban
morphology Variation in building

height
Negative

Standard deviation of the
building height

[97,116,139]
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