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Abstract. In line with fields of theoretical computer science and biology
that study Boolean automata networks often seen as models of regulation
networks, we present some results concerning the dynamics of networks
whose underlying interaction graphs are circuits, that is, Boolean au-

tomata circuits. In the context of biological regulation, former studies
have highlighted the importance of circuits on the asymptotic dynamical
behaviour of the biological networks that contain them. Our work focuses
on the number of attractors of Boolean automata circuits. We prove how
to obtain formally the exact value of the total number of attractors of
a circuit of arbitrary size n as well as, for every positive integer p, the
number of its attractors of period p depending on whether the circuit has
an even or an odd number of inhibitions. As a consequence, we obtain
that both numbers depend only on the parity of the number of inhibi-
tions and not on their distribution along the circuit.
Keywords: Discrete dynamical system, formal neural network, positive
and negative circuit, asymptotic behaviour, attractor.

1 Introduction

The theme of this article is set in the general framework of complex dynam-
ical systems and, more precisely, that of regulation or neural networks modeled
by means of discrete mathematical tools. Since McCulloch and Pitts [1] proposed
threshold Boolean automata networks to represent neural networks formally in
1943 and later, at the end of the 1960’s, Kauffman [2] and Thomas [3] introduced
the first models of genetic regulation networks, many other studies based on the
same or different formalisms were carried out on the theoretical properties of
such networks. One of the main motivations of many of them was to better un-
derstand those emergent dynamical behaviours that networks display and that
cannot be explained or predicted by a simple analysis of the local interactions
existing between the components of the networks. Amongst the studies pub-
lished in this context since the end of the 1990’s, one may cite [4,5,6,7,8]. Earlier
on, Hopfield [9,10] emphasised the notions of memory and learning and Goles
et al. revealed in [11,12,13] interesting dynamical properties of some particular
networks. Further, later works by Thomas and Kauffman [14,15] yielded conjec-
tures and gave rise to problematics that are still relevant in the field of regulation



networks beyond the particular definition of the models one may choose to use.
For instance, Thomas highlighted the importance of specific patterns on the dy-
namics of discrete regulation networks and Kauffman gave an approximation of
the number of different possible asymptotic behaviours of Boolean networks.

From the point of view of theoretical biology as well as that of theoretical
computer science, it seems to be of great interest to address the question of the
number of attractors in the dynamics of a network. Close to the 16th Hilbert
problem concerning the number of limit cycles of dynamical systems [16], this
question has already been considered in some works [17,18,19]. It is of particular
relevance in the neighbouring field of formal neural networks where attractors
represent memorisation capacity [9,10]. Driven by a similar will to understand
the dynamical properties of (regulation or neural) networks modeled by Boolean
automata networks, we have decided to first focus our attention on a simple in-
stance of Boolean automata networks, that is, Boolean automata circuits (which
also happen to be a simple instance of threshold Boolean automata networks [1]).
The reason for this choice is that circuits are known to play an important part
in the dynamics of a network that contains them. One way to see this is to note
that a network whose underlying interaction graph is a tree or more generally
a graph without circuits can only eventually end up in a configuration that will
never change over time. A network with retroactive loops, on the contrary, will
exhibit more diverse dynamical behaviour patterns. Thomas [14] had already
noted the importance of underlying circuits in networks. He formulated conjec-
tures concerning the role of positive (i.e., with an even number of inhibitions)
and negative (i.e., with an odd number of inhibitions) circuits in the dynam-
ics of regulation networks. Besides the fact that they are known to be decisive
patterns for the dynamics of arbitrary biological networks, circuits are also rele-
vant because they may be regarded specifically as internal layers of feedforward
networks5. Identifying the dynamics of circuits is thus a first step in the process
of understanding and formalising the dynamics of such networks. The reason
why feedforward networks present a theoretical interest is that many biological
systems are known to have a feedforward architecture [20]. For instance, in the
lamprey [21,22], the sensory input and the basal ganglia control network respec-
tively activates and inhibits the locomotor network without any feedback of the
latter to them. It is also the case in the hypothalamus in the feed-forward chains
of Glu- and Gaba-neurons [23].

In this paper, we give the results and the proofs that allow a new charac-
terisation of the asymptotic dynamical behaviour of Boolean automata circuits
evolving synchronously (i.e. at each time step, every node executes its transition
function), in terms of combinatorics. After the preliminary section 2, sections 3
and 4 deal, respectively, with the dynamics of positive circuits and negative cir-
cuits updated synchronously. For both types of circuits, we obtain the exact
values of the total number of attractors of these circuits and of their number
of attractors of period p for every positive integer p. These values happen to

5 Feedforward networks are networks whose structure can be represented by a layered
graph with no feedback loops between layers.



be terms of integer sequences defined by different combinatoric problems that
we showed to be isomorphic to the problem of counting attractors of a circuit.
Section 5 mentions some of them. The conclusion discusses the main perspective
of this work.

2 Definitions, notations and preliminary results

A circuit of size n is a directed graph that we will denote by Cn = (V,A). We
will consider that its set of nodes, V = {0, . . . , n− 1}, corresponds to the the set
of elements of Z/nZ so that, considering two nodes i and j, i+ j designates the
node i + j mod n. The circuits set of arcs is then A = {(i, i + 1) | 0 ≤ i < n}.
Let id be the identity function (∀a ∈ {0, 1}, id(a) = a) and neg the negation
function (∀a ∈ {0, 1}, neg(a) = ¬a = 1 − a). A Boolean automata network of
size n associated to a circuit or Boolean automata circuit of size n is a couple
Rn = (Cn, F ) where Cn is a circuit of size n whose nodes are assimilated to the
automata of the network and F is the global transition function of the network.
By a minor abuse of language, we will refer to the (global) state of Rn as a vector
x = (x0 . . . xn−1) ∈ {0, 1}n whose coefficient xi is the state of node i of Cn. F is
defined by a set of n local transition functions {fi ∈ {id, neg} | 0 ≤ i < n} that
will be, for our matter, applied synchronously: let x = (x0 . . . xn−1) ∈ {0, 1}n
represent a global state of Rn, then:

F (x) = (f0(xn−1), . . . , fi(xi−1), . . . , fn−1(xn−2)).

When there will be no ambiguity as to what network we are considering, we
will also note this transition rule x(t + 1) = F (x(t)) where x(t) ∈ {0, 1}n and
t ∈ N so that ∀k ∈ N, x(t+ k) = F (F k−1(x(t))) and at the local level of nodes,
xi(t + 1) = F (x(t))i = fi(xi−1(t)). Note that with the restriction on the local
transition functions, fi ∈ {id, neg}, we do not loose any generality. Indeed, if at
least one of the nodes of the circuit, say node i, has a constant local function
then its incoming arc is useless. Node i does not depend on node i − 1 and we
no longer are looking at a “real” circuit. An arc (i, i + 1) is said to be positive
(resp. negative) if fi+1 = id (resp. fi+1 = neg). The network Rn and the circuit
associated, Cn = (V,A), are said to be positive (resp. negative) if the number of
negative arcs of A is even (resp. odd).

Note that the definition that we have just given of Boolean automata network
associated to a circuit, or, more simply Boolean automata circuit, is a particular
example of a quasi-minimal6 threshold Boolean automata network. Indeed, as it
can easily be checked, id and neg can both be expressed as threshold functions
and thus, so can all local transition functions using identical interaction weights
and threshold values for all arcs and nodes (see [5] for more details on this
subject).

6 A quasi-minimal network is a network such that, if an arc is removed from the
associated graph, then the dynamics of the network is changed.



Let Rn = (Cn, F ) be a Boolean automata circuit of size n. In the sequel, we
will make substantial use of the following function:

F [j, i] =

{

fj ◦ fj−1 ◦ . . . ◦ fi if i ≤ j

fj ◦ fj−1 ◦ . . . ◦ f0 ◦ fn−1 ◦ . . . ◦ fi if j < i

There are several things to note about this function. First, because ∀k, fk ∈
{id, neg}, F [j, i] is injective. Second, if Cn is positive then ∀j, F [j + 1, j] = id
and if, on the contrary, Cn is negative then ∀j, F [j + 1, j] = neg. Finally, it is
also important to notice that the following is true for all t ∈ N, p ≤ n, i ∈ Z/nZ:

xi(t+ p) =

fi(xi−1(t+ p− 1)) = fi(fi−1(xi−2(t+ p− 2))) =

. . . = F [i, i− p+ 1](xi−p(t)).

Since the set of global states of Rn is finite, when the network is updated,
it necessarily ends up looping. In other words, ∀ x(0) ∈ {0, 1}n, ∃t, p, x(t +
p) = x(t). We call attractor or limit cycle the orbit of x(t), i.e., the finite set
{x(t+k) | k ∈ N}. The period of this attractor is its cardinal, i.e., the smallest p
such that for any state k ∈ N, x(t+ k+ p) = x(t+ k). Elements belonging to an
attractor of period 1 are usually called fixed points. The set of all global states
of Rn belonging to an attractor of period p is denoted by:

Sp(Rn) =

{x ∈ {0, 1}n | F p(x) = x and ∀d < p, F d(x) 6= x}

and the number of attractors of period p of a network Rn is denoted by:

Ap(Rn) =
1

p
· |Sp(Rn)|.

Figure 1 pictures three different circuits of size 4 (two positive and one negative)
as well as their dynamics by an iteration graph whose set of vertices is {0, 1}4
and whose strongly connected components are the attractors of the network.

Now, let Rn = (Cn, F ). We define the following property PF on {1, . . . , n}×
{0, 1}n depending on F :

∀p ≤ n, ∀x ∈ {0, 1}n,
PF (p, x) ⇔ ∀ i ∈ Z/nZ, xi = F [i, i− p+ 1](xi−p)

By induction on k where i = k · p+ r, r < p, it can be shown that property PF

is equivalent to the following:

PF (p, x) ⇔
{

∀i < p, xi = F [i, i− p+ 1](xi−p) and

∀ i ≥ p, xi = F [i, (i mod p) + 1](xi mod p)
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Fig. 1. Figures 1.a., b. and c. represent three different Boolean automata circuits
of size n = 4. That of figures 1.a. and b. are positive while that of figure 1.c. is
negative. Figures 2.a., b. and c. picture the iteration graph of these networks, that
is, the graph that represents their dynamics. The nodes of these graphs are the
elements of {0, 1}n and an arc (x,y) exists in this graph if and only if F (x) = y.
Every strongly connected component of the iteration graph corresponds to an
attractor of size the number of elements in this component. Note that in all three
cases here, all elements belong to an attractor. This is usually not the case with
arbitrary Boolean automata networks which are not circuits.

The definition of PF (p, x) takes its meaning from the following result which
characterises global states that loop after p transitions (or less), i.e. states of Sd

where d ≤ p:

Lemma 1. Let Rn = (Cn, F ) be a Boolean automata circuit of size n, let p ≤ n
and let x(0) ∈ {0, 1}n be an arbitrary global state of Rn. Then,

∀t, x(t) = x(t+ p) ⇔ ∀t, PF (p, x(t)).

Proof. Suppose that ∀t, PF (p, x(t)). Then,

∀r, 0 ≤ r < p, F [p+ r, r + 1](xr(t)) =

xp+r(t+ p) = F [p+ r, r + 1](xr(t+ p)),



where the first equality is always true (see the remark made above after the
definition of F [j, i]) and the second is due to PF (p, x(t+p)). With the injectivity
of F [p+ r, r + 1], this implies that xr(t) = xr(t+ p). In addition, ∀i, p ≤ i < n
such that r = i mod p:

xi(t+ p) = F [i, r + 1](xr(t+ p)) = F [i, r + 1](xr(t)) = xi(t).

The first equality above is due to PF (p, x(t+p)), the second to xr(t+p) = xr(t)
and the third to PF (p, x(t)). On the other hand, suppose that ∀t, x(t) = x(t+p).
Then, ∀i ∈ Z/nZ, xi(t) = xi(t+ p) = F [i, i− p+ 1](xi−p(t)). �

In the sequel, we will compare the dynamics of particular couples of circuits
of same signs, Rp = (Cp, H) and Rn = (Cn, F ), where p divides n = p · q
and where the global transition function H of Rp is defined by the set of local
transition functions {hi | i ∈ Z/pZ} and the global transition function F of
Rn is defined by the set {fi | i ∈ Z/nZ}. More precisely, we will build an
isomorphism between the iteration graphs of Rn and Rp. To do this, we will use
the injection QF,H defined below that maps a state x(t) ∈ {0, 1}p of Rp to a state
y(t) = QF,H(x(t)) ∈ {0, 1}n of Rn such that ∀k ∈ N, x0(t+ k) = y0(t+ k). The
idea behind the definition of QF,H is roughly to make Rn “mimic” the dynamical
behaviour of Rp.

∀x ∈ {0, 1}p, ∀ i = kp+ r ∈ Z/nZ such that r = i mod p and s = i+ 1 mod p,

QF,H(x)i =























xr if fi+1 = hs and yi+1 = xs
or fi+1 6= hs and yi+1 6= xs
or i = r = 0

¬xr if fi+1 = hs and yi+1 6= xs
or fi+1 6= hs and yi+1 = xs

By a reversed induction on i, the following can be shown:

QF,H(x)0 = x0 and ∀ 0 < i < n,

QF,H(x)i =

{

xr if F [0, i+ 1] = H[0, 1]q−1−k ◦H[0, s]

¬xr otherwise

Note that H[0, 1] = id if and only Rp is positive. In the sequel, we will only
consider one of the two following cases (the reason for this will be given further
on):

1. Rp and Rn are both positive or
2. Rp and Rn are both negative and q is odd.

In both cases, it holds that F [0, 1] = H[0, 1] and H[0, 1]q−1 = id so that
QF,H(x)0 = x0. The reader can also check that F (QF,H(x))i+1 = H(QF,H(x))s ⇔
QF,H(x)i+1 = xs so that F (QF,H(x)) = QF,H(H(x)). Since QF,H is clearly in-
jective, in both cases mentioned, QF,H satisfies the desired properties.



3 Positive circuits

In this section, we focus on positive Boolean automata circuits, that is, net-
works associated to circuits having an even number of negative arcs.

Lemma 2. Let Rn = (Cn, F ) be a positive Boolean automata circuit of size n.
Every global state x ∈ {0, 1}n of Rn belongs to an attractor of period a divisor
of n.

Proof. Suppose that F is defined by {fi | i ∈ Z/nZ}. Let x(t) = (x0(t), . . . , xn−1(t))
be an arbitrary global state of Rn. Then,

∀j ∈ Z/nZ, xj(t+ n) = F [j, j + 1](xj(t+ n− n)) = xj(t).

The last equality above holds because, Cn being positive, F [j, j + 1] = id. �

Lemma 2 is an extension of a result proven by Goles et al. in [24]. The purpose
of the two following lemmas is to compare the dynamics of different circuits of
same sign. The first of these two results, Lemma 3, is proven by establishing an
isomorphism between the attractors whose period is the largest of two networks
of same size. Lemma 4 is proven by establishing an isomorphism between the
attractors of circuits of different sizes. Very roughly, the main idea in the con-
struction of these isomorphisms is to show that the dynamical behaviour of one
of the circuits can always be made to “mimic” that of the other.

Lemma 3. If Rp = (Cp, F ) and R′
p = (C′

p, H) are two positive Boolean au-
tomata circuits, both of size p, then the number of attractors of period p of both
networks is the same:

Ap(Rp) = Ap(R
′
p).

Proof. Let x(t) ∈ Sp(Rp) and let y(t) = QF,H(x(t)). From the remarks concern-
ing QF,H done after its definition, at the end of the previous section, y(t+ p) =
QF,H(x(t + p)) = QF,H(x(t)) = y(t) and there exists no d < p such that
y(t + d) = y(t) (otherwise, from the injectivity of QF,H it would hold that
x(t+ d) = x(t) which contradicts x(t) ∈ Sp(Rp)). �

Thus, provided Rp = (Cp, F ) is positive, Ap(Rp) is independent of the distribu-
tion and number of negative arcs in Cp. Therefore, from now on, we will use the
following notations:

A
+
p =

1

p
· |Sp(Rp)| = Ap(Rp)

for all positive Boolean automata circuits Rp of size p.

Lemma 4. Let Rn be a positive Boolean automata circuit of size n. Then, for
every divisor p of n,

Ap(Rn) = A
+
p .



Proof. Suppose that Rn = (Cn, F ) where F is defined by {fi | i ∈ Z/nZ}
and n = q · p, q, p ∈ N. We will show that there exists a network Rp of size
p such that the sets Sp(Rn) and Sp(Rp) are isomorphic. First, we define the
network Rp = (Cp, H) where H, the global transition function of Rp, is defined
by {h0 = F [0, p]} ∪ {hi = fi | 0 < i < p}.

Now, suppose that x(t) belongs to Sp(Rp) and let y(t) = QF,H(x(t)) ∈
{0, 1}n. By an argument similar to that used in the proof of Lemma 3, we find
that y(t) ∈ Sp(Rn).

On the other hand, if y(t) ∈ Sp(Rn), we define x(t) ∈ {0, 1}p such that ∀ i ∈
Z/pZ, xi(t) = yi(t). Because Cn and Cp are positive and because h0 = F [0, p],
PF (p, y(t)) (true by Lemma 1) implies y(t) = QF,H(x(t)). Lemma 2 suffices to
state that x(t + p) = x(t). But it is, again, by the injectivity of QF,H that we
can claim that there is no d < p such that x(t+ d) = x(t). �

As a consequence of the previous lemmas, we finally get the main result of this
section:

Theorem 1. ∀n ∈ N,

(i) 2n =
∑

p|n A
+
p × p

(ii) A
+
n = 1

n ·∑p|n µ(
n
p ) · 2p

(iii) T
+
n = 1

n ·∑p|n ψ(
n
p ) · 2p

where µ is the Möbius function [25,26], ψ the Euler totient function and T
+
n the

total number of distinct attractors of a positive Boolean automata circuit.

Proof. Let Rn be a positive Boolean automata circuit. By Lemma 2, all of the
2n global states of a Rn belong to an attractor whose period is a divisor of n.
(i) then comes from Lemmas 3 and 4. (ii) is shown using the Möbius inversion
formula (see [25,26]) on (i). For the proof of (iii), we use the fact that ψ(m) =
∑

r|m(m/r) · µ(r):

T
+
n =

∑

p|n

A
+
p =

∑

p|n

∑

d|p

1

p
· µ(p

d
) · 2d

=
1

n
·
∑

p|n

∑

d|p

2d · n
p
· µ(p

d
) =

1

n
·
∑

p|n

∑

d|p

2d · n

(p/d) · d · µ(p
d
)

=
1

n
·
∑

d|n

2d
∑

k|n/d

n

k · d · µ(k) =
1

n
·
∑

d|n

ψ(
n

d
) · 2d.

�

In particular, point (ii) of Theorem 1 implies that if n is prime then, since
µ(n) = −1,

A
+
n =

1

n
· (µ(n) · 2 + µ(1) · 2n) =

2n − 2

n
.



Notice also that because 1 is a divisor of all n ∈ N, every positive Boolean
automata circuitRn has exactly two fixed points, i.e, A1(Rn) = A1(R1) = A

+
1 = 2.

In [5] and [27], positive circuits are characterised this way and indeed, as we will
see in the next section, negative circuits never have any fixed points. From this
characterisation, the authors of these articles also infer some results concerning
more general networks.

Table 1. Number of attractors of positive Boolean automata circuits.
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We performed computer simulations of the dynamical behaviour of positive
circuits of sizes between 1 and 22. Simulations done for different circuits of the
same size confirmed Lemma 3. An example picturing these results is given in
Figure 1 where two different positive circuits of size 4 and their dynamics are
represented. Table 1 shows some of the results we obtained for circuits of different
sizes. In this table, n is the size of the network and p the period of the attractor.
In the cell corresponding to line p and column n figures Ap(Rn). Notice that as
Lemma 4 predicts, all numbers appearing on one line are the same. In particular,
line one indicates that all positive circuits have two fixed points.

4 Negative circuits

We are now going to consider negative circuits. The approach we take here
is very similar to that of the previous section so we will give few comments on
how this case is handled. We may note incidently that most results concerning
negative Boolean automata circuits can be derived from those concerning positive
Boolean automata circuits by associating to a negative Boolean automata circuit
Rn = (Cn, F ), the positive Boolean automata circuit R2n = (C2n, H) where H
is defined by the set {hi | i ∈ Z/2nZ, hi = hi+n = fi}. Just as Lemma 2
does for the positive case, Lemma 5 recalls and extends some important general



properties of the dynamics of negative circuits that were mentioned by Goles et
al. in [24].

Lemma 5. Let Rn = (Cn, F ) be a negative Boolean automata circuit of size n.
Then,

1. Every global state x ∈ {0, 1}n of Rn belongs to an attractor of period a divisor
of 2n;

2. If Sp(Rn) 6= ∅, then p is an even divisor of 2n and n = q× p
2
where q is odd.

Proof.

1. By a similar proof to that of Lemma 2, we find that ∀x(t) ∈ {0, 1}n,
x(n+ t) = ¬x(t) which implies that x(2n+ t) = x(t). Thus every global state
belongs to an attractor of period a divisor of 2n.

2. Suppose that x ∈ Sp(Rn) where p divides n. By Lemma 1, PF (p, x) must be
true so ∀ 0 ≤ r < p, xr = F [r, r−p+1](xr−p) = F [r, r−p+1]◦F [r−p, r+
1](xr) = F [r, r+1](xr). However, because Cn is negative, F [r, r+1] = neg.
This leads to the contradiction xr = ¬xr. Thus, if Sp(Rn) 6= ∅, then p divides
2n without dividing n. This means that p must be even and we necessarily
must have n = q × p/2 where q is odd. �

Analog results of Lemmas 3 and 4 for the negative case can be shown. They
allow us to note, for all negative Boolean automata circuit Rn where n = p× q
and q is odd,

A
−
2p =

1

2p
· |S2p(Rn)| = A2p(Rn).

As a consequence, we obtain the following theorem which is proven with very
similar arguments to that used in the proof of Theorem 1.

Table 2. Number of attractors of negative Boolean automata circuits.
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Theorem 2. ∀n ∈ N,

(i) 2n =
∑

odd q|n A
−
2n/q × 2n/q

(ii) A
−
2n = 1

2n ·∑odd q|n µ(q) · 2n/q
(iii) T

−
n = 1

2n ·∑odd p|n ψ(
n
p ) · 2p

where T−n is the total number of distinct attractors of a negative Boolean automata
circuit (and where µ and ψ still are, respectively, the Möbius function and the
Euler totient as in theorem 1).

Computer simulations of the dynamics of negative circuits of sizes between
1 and 22 were performed. The results of these simulations are shown in Table 2
below (see the last paragraph of section 3 for an explanation of what holds each
cell of this table). A particular case of formulas (ii) and (iii) of Theorem 2 is
when n = 2k. Then, since 1 is the only odd divisor of n, A−2n = T

−
n = 2n−k−1 (see

cells (p = 16, n = 8) and (p = 32, n = 8) of Table 2).
Again, we may also note that Theorem 2 implies that a negative circuit never

has any fixed points in its dynamics. In [5] and [27], the authors proven a result
stating that arbitrary networks containing only negative circuits have no fixed
points.

5 Related problems

Thanks to the results of the previous sections, it is possible to define and
concentrate on one canonical circuit of each sign and size. Indeed, for the positive
case, for instance, since A

+
p does not depend on the distribution or number of

negative arcs in the circuit in question as long as this number is even, it is possible
to choose a positive circuit R+

n = (Cn, F
+) as the representative of all positive

circuits of same size n. Then, for any other positive network Rn = (Cn, F ),
there exists a permutation σ of {0, 1}n such that ∀x ∈ {0, 1}n, F (x) = F+(σ(x)).
Choosing a canonical positive circuit is easy and straightforward: R+

n = (Cn, F
+)

can be the circuit of size n that has no negative arcs. Note that F+ is then defined
by a set of n local functions all equal to id and acts as a rotation of the coefficients
of vectors in {0, 1}n:

∀(x0, . . . , xn−1) ∈ {0, 1}n, F+(x0, . . . , xn−1) = (xn−1, x0, . . . , xn−2).

Choosing wisely a canonical negative circuit is less obvious because a circuit with
only negative arcs is negative only if its size is odd. The choice of this circuit
must therefore depend on the use we want to make of it.

Now, sequences (A+n )n∈N, (T
+
n )n∈N, (A

−
2n)n∈N and (T−n )n∈N defined in the pre-

vious sections happen to correspond precisely and respectively to the integer
sequences A1037, A31, A48 and A16 of the OEIS [28]. In [28], these sequences
are defined by different combinatoric problems. Defining canonical Boolean au-
tomata circuits allowed us to study how some of them relate to the problem
of counting the number of attractors (of given period or in total) of Boolean



automata circuits. In particular we focused on those problems related to binary
necklaces and Lyndon words [29], to binary shift register sequences [30,31] and to
cycles in a digraph under x2 mod q where q = 2n+1−1 is a Mersenne prime [32].
The relationships found with these problems, provided interesting different ways
of formalising the dynamics of Boolean automata circuits updated synchronously.
For instance, the work presented in [30,31] allowed us to formalise the dynamics
of circuits in terms of the action of a permutation group on the set of global states
and corroborate the formulas for T+n and T

−
n using the Burnside Lemma [33,34].

Drawing inspiration from [32], we also derived a new expression for Sp(R
+
n ):

Sp(R
+
n ) = {x ∈ G | ord(x) = d and p = ordd(2)}

where d = ord(x) = min{k | x · k ≡ 0 mod 2n − 1} is the order of x in the cyclic
additive group Z/(2n − 1)Z and ordd(2) is the order of 2 in the group (Z/dZ)∗.
And since ψ(d) counts the number of elements of order d in Z/(2n − 1)Z, we
thus obtain another way of explaining the presence of the Euler totient function
in the formula of T+n .

6 Conclusion

From the results presented in this article, several questions arise. The first
and most obvious of them is, now that we know the dynamics of circuits syn-
chronously updated, how do these results translate into other update schedules
such as sequential or block-sequential schedules for instance?

Besides its obvious need for an extension towards more general update sched-
ules, we believe our work would also benefit from an extension toward more gen-
eral networks such as feedforward networks and perhaps even random networks.
Further, comparisons with other related studies and the results they produced
are called for. For instance, in [2], [35] and in [5], experimental or theoretical
results prove or suggest that the networks in question have only very little dif-
ferent asymptotic dynamical behaviours (O(

√
n) in the case of connectivity 2

networks considered in [2] and [5], one or two in the case of the small networks
studied in [35]). This seems, at first sight, to be in contradiction with the expo-
nential number of attractors of Boolean automata circuits that we found above.
It would be interesting to connect the two sources of results in order to lift the
contradiction. Thus, relating the dynamics of a network with that of the circuits
it contains when they are isolated seems to be a natural and essential step in
the comprehension of the dynamics of ordinary Boolean automata networks.
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